Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.
Implications over intuitionistic fuzzy sets: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 827: | Line 827: | ||
| | | | ||
| {<x, <font color=green>max(μ<sub>B</sub>(x),ν<sub>A</sub>(x).(1-ν<sub>A</sub>(x))+{{overline|sg}}(1-ν<sub>A</sub>(x)))</font>, <font color=red>min((1-μ<sub>B</sub>(x)).μ<sub>B</sub>(x)+{{overline|sg}}(μ<sub>B</sub>(x)),(1-ν<sub>A</sub>(x)).(ν<sub>A</sub>(x).(1-ν<sub>A</sub>(x))+{{overline|sg}}(1-ν<sub>A</sub>(x)))+{{overline|sg}}(ν<sub>A</sub>(x)))</font>>|x ∈ E} | | {<x, <font color=green>max(μ<sub>B</sub>(x),ν<sub>A</sub>(x).(1-ν<sub>A</sub>(x))+{{overline|sg}}(1-ν<sub>A</sub>(x)))</font>, <font color=red>min((1-μ<sub>B</sub>(x)).μ<sub>B</sub>(x)+{{overline|sg}}(μ<sub>B</sub>(x)),(1-ν<sub>A</sub>(x)).(ν<sub>A</sub>(x).(1-ν<sub>A</sub>(x))+{{overline|sg}}(1-ν<sub>A</sub>(x)))+{{overline|sg}}(ν<sub>A</sub>(x)))</font>>|x ∈ E} | ||
|- valign="top" | |||
| →<sub>137</sub> | |||
| | |||
| | |||
| {<x, <font color=green>μ<sub>B</sub>(x)+ν<sub>A</sub>(x)-μ<sub>B</sub>(x).ν<sub>A</sub>(x)</font>, <font color=red>((1-μ<sub>B</sub>(x)).μ<sub>B</sub>(x)+{{overline|sg}}(μ<sub>B</sub>(x))).(1-ν<sub>A</sub>(x))</font>>|x ∈ E} | |||
|} | |} | ||
Revision as of 13:20, 14 November 2013
For the various definitions of implication of over intuitionistic fuzzy sets, the functions sg(x) and sg(x) have been used:
[math]\displaystyle{ \text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \gt 0 \\ 0 & \text{if } x \leq 0 \end{array}, }[/math] [math]\displaystyle{ \overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \lt 0 \\ 0 & \text{if } x \geq 0 \end{array}. }[/math]
ρ== List of intuitionistic fuzzy implications ==
| No. | Ref. | Year | Implication |
|---|---|---|---|
| →1 | {<x, max(νA(x),min(μA(x),μB(x))), min(μA(x),νB(x))>|x ∈ E} | ||
| →2 | {<x, sg(μA(x)-μB(x)), νB(x).sg(μA(x)-μB(x))>|x ∈ E} | ||
| →3 | {<x, 1-(1-μ(x)).sg(μA(x)-μB(x)), νB.sg(μA(x)-μB(x)) >|x ∈ E} | ||
| →4 | {<x, max(νA(x),μB(x)), min(μA(x),νB(x))>|x ∈ E} | ||
| →5 | {<x, min(1,νA(x)+μB(x)), max(0,μA(x)+νB(x)-1)>|x ∈ E} | ||
| →6 | {<x, νA(x)+μA(x)μB(x), μA(x)νB(x)>|x ∈ E} | ||
| →7 | {<x, min(max(νA(x),μB(x)),max(μA(x),νA(x)), max(μB(x),νB(x))), max(min(μA(x),νB(x)), min(μA(x),νA(x)),min(μB(x),νB(x)))>|x ∈ E} | ||
| →8 | {<x, 1-(1-min(νA(x),μB(x))).sg(μA(x)-μB(x)), max(μA(x),νB(x)).sg(μA(x)-μB(x)),sg(νB(x)-νA(x))>|x ∈ E} | ||
| →9 | {<x, νA(x)+μA(x)2μB(x), μA(x)νA(x)+μA(x)2νB(x)>|x ∈ E} | ||
| →10 | {<x, μA(x).sg(1-μA(x))+sg(1-μA(x)).(sg(1-μB(x))+νA(x).sg(1-μB(x))), νB.sg(1-μA(x))+μA(x).sg(1-μA(x)).sg(1-μB(x))>|x ∈ E} | ||
| →11 | {<x, 1-(1-μB(x)).sg(μA(x)-μB(x)), νB(x).sg(μA(x)-μB(x)).sg(νB(x)-νA(x))>|x ∈ E} | ||
| →12 | {<x, max(νA(x),μB(x)), 1-max(νA(x),μB(x))>|x ∈ E} | ||
| →13 | {<x, νA(x)+μB(x)-νA(x).μB(x), μA(x).νB(x)>|x ∈ E} | ||
| →14 | {<x, 1-(1-μB(x)).sg(μA(x)-μB(x))-νB(x).sg(μA(x)-μB(x)).sg(νB(x)-νA(x)), νB(x).sg(νB(x)-νA(x))>|x ∈ E} | ||
| →15 | {<x, 1-sg(μA(x)-μB(x)).sg(νB(x)-νA(x)), sg(sg(μA(x)-μB(x))+sg(νB(x)-νA(x)))>|x ∈ E} | ||
| →16 | {<x, max(sg(μA(x)),μB(x)), min(sg(μA(x)),νB(x))>|x ∈ E} | ||
| →17 | {<x, max(νA(x),μB(x)), min(μA(x).νA(x)+μA(x)2,νB(x))>|x ∈ E} | ||
| →18 | {<x, max(νA(x),μB(x)), min(1-νA(x),νB(x))>|x ∈ E} | ||
| →19 | {<x, max(1-sg(sg(μA(x))+sg(1-νA(x))),μB(x)), min(sg(1-νA(x)),νB(x))>|x ∈ E} | ||
| →20 | {<x, max(sg(μA(x)),sg(μA(x)))), min(sg(μA(x)),sg(μB(x)))>|x ∈ E} | ||
| →21 | {<x, max(νA(x),μB(x).(μB(x)+νB(x))), min(μA(x).(μA(x)+νA(x)),νB(x).(μB(x)2+νB(x)+μB(x).νB(x)))>|x ∈ E} | ||
| →22 | {<x, max(νA(x),1-νB(x)), min(1-νA(x),νB(x))>|x ∈ E} | ||
| →23 | {<x, 1-min(sg(1-νA(x)),sg(1-νB(x))), min(sg(1-νA(x)),sg(1-νB(x)))>|x ∈ E} | ||
| →24 | {<x, sg(μA(x)-μB(x)).sg(νB(x)-νA(x)), sg(μA(x)-μB(x)).sg(νB(x)-νA(x))>|x ∈ E} | ||
| →25 | {<x, max(νA(x),sg(μA(x)).sg(1-νA(x)),μB(x).sg(νB(x)).sg(1-μB(x))), min(μA(x),νB(x))>|x ∈ E} | ||
| →26 | {<x, max(sg(1-νA(x)),μB(x)), min(sg(μA(x)),νB(x))>|x ∈ E} | ||
| →27 | {<x, max(sg(1-νA(x)),sg(μB(x))), min(sg(μA(x)),sg(1-νB(x)))>|x ∈ E} | ||
| →28 | {<x, max(sg(1-νA(x)),μB(x)), min(μA(x),νB(x))>|x ∈ E} | ||
| →29 | {<x, max(sg(1-νA(x)),sg(1-μB(x))), min(μA(x),sg(1-νB(x)))>|x ∈ E} | ||
| →30 | {<x, max(1-μA(x),min(μA(x),1-νB(x))), min(μA(x),νB(x))>|x ∈ E} | ||
| →31 | {<x, sg(μA(x)+νB(x)-1), νB(x).sg(μA(x)+νB(x)-1)>|x ∈ E} | ||
| →32 | {<x, 1-νB(x).sg(μA(x)+νB(x)-1), νB(x).sg(μA(x)+νB(x)-1)>|x ∈ E} | ||
| →33 | {<x, 1-min(μA(x),νB(x)), min(μA(x),νB(x))>|x ∈ E} | ||
| →34 | {<x, min(1,2-μA(x)-μB(x)), max(0,μA(x)+νB(x)-1)>|x ∈ E} | ||
| →35 | {<x, 1-μA(x).νB(x), μA(x).νB(x)>|x ∈ E} | ||
| →36 | {<x, min(1-min(μA(x),νB(x)),max(μA(x),1-μA(x)),max(1-νB(x),νB(x))), max(min(μA(x),νB(x)),min(μA(x),1-μA(x)),min(1-νB(x),νB(x)))>|x ∈ E} | ||
| →37 | {<x, 1-max(μA(x),νB(x)).sg(μA(x)+νB(x)-1), max(μA(x),νB(x)).sg(μA(x)+νB(x)-1)>|x ∈ E} | ||
| →38 | {<x, 1-μA(x)+(μA(x)2.(1-νB(x))), μA(x)(1-μA(x))+μA(x)2.νB(x)>|x ∈ E} | ||
| →39 | {<x, (1-νB(x)).sg(1-μA(x))+sg(1-μA(x)).(sg(νB(x))+(1-μA(x)).sg(νB(x))), νB(x).sg(1-μA(x))+μA(x).sg(1-μA(x)).sg(νB(x))>|x ∈ E} | ||
| →40 | {<x, 1-sg(μA(x)+νB(x)-1), 1-sg(μA(x)+νB(x)-1)>|x ∈ E} | ||
| →41 | {<x, max(sg(μA(x)),1-νB(x)), min(sg(μA(x)),νB(x))>|x ∈ E} | ||
| →42 | {<x, max(sg(μA(x)),sg(1-νB(x))), min(sg(μA(x)),sg(1-νB(x)))>|x ∈ E} | ||
| →43 | {<x, max(sg(μA(x)),1-νB(x)), min(sg(μA(x)),νB(x))>|x ∈ E} | ||
| →44 | {<x, max(sg(μA(x)),1-νB(x)), min(μA(x),νB(x))>|x ∈ E} | ||
| →45 | {<x, max(sg(μA(x)),sg(νB(x))), min(μA(x),sg(1-νB(x)))>|x ∈ E} | ||
| →46 | {<x, max(νA(x),min(1-νA(x),μB(x))), 1-max(νA(x),μB(x))>|x ∈ E} | ||
| →47 | {<x, sg(1-νA(x)-μB(x)), (1-μB(x)).sg(1-νA(x)-μB(x))>|x ∈ E} | ||
| →48 | {<x, 1-(1-μB(x)).sg(1-νA(x)-μB(x)), (1-μB(x)).sg(1-νA(x)-μB(x))>|x ∈ E} | ||
| →49 | {<x, min(1,νA(x)+μB(x)), max(0,1-νA(x)-μB(x))>|x ∈ E} | ||
| →50 | {<x, νA(x)+μB(x)-νA(x).μB(x), 1-νA(x)-μB(x)+νA(x).μB(x)>|x ∈ E} | ||
| →51 | {<x, min(max(νA(x),μB(x)),max(1-νA(x),νA(x)),max(μB(x),1-μB(x))), max(1-max(νA(x),μB(x)),min(1-νA(x),νA(x)),min(μB(x),1-μB(x)))>|x ∈ E} | ||
| →52 | {<x, 1-(1-min(νA(x),μB(x))).sg(1-νA(x)-μB(x)), 1-min(νA(x),μB(x)).sg(1-νA(x)-μB(x))>|x ∈ E} | ||
| →53 | {<x, νA(x)+(1-νA(x))2.μB(x), (1-νA(x)).νA(x)+(1-νA(x))2.(1-μB(x))>|x ∈ E} | ||
| →54 | {<x, μB(x)sg(νA(x))+sg(νA(x)).(sg(1-μB(x))+νA(x).sg(1-μB(x))), (1-μB(x)).sg(νA(x))+(1-νA(x)).sg(νA(x)).sg(1-μB(x))>|x ∈ E} | ||
| →55 | {<x, 1-sg(1-νA(x)-μB(x)), 1-sg(1-νA(x)-μB(x))>|x ∈ E} | ||
| →56 | {<x, max(sg(1-νA(x)),μB(x)), min(sg(1-νA(x)),1-μB(x))>|x ∈ E} | ||
| →57 | {<x, max(sg(1-νA(x)),sg(μB(x))), min(sg(1-νA(x)),sg(μB(x)))>|x ∈ E} | ||
| →58 | {<x, max(sg(1-νA(x)),sg(1-μB(x))), 1-max(νA(x),μB(x))>|x ∈ E} | ||
| →59 | {<x, max(sg(1-νA(x)),μB(x)), 1-max(νA(x),μB(x))>|x ∈ E} | ||
| →60 | {<x, max(sg(1-νA(x)),sg(1-μB(x))), min(1-νA(x),sg(μB(x)))>|x ∈ E} | ||
| →61 | {<x, max(μB(x),min(νB(x),νA(x))), min(νB(x),μA(x))>|x ∈ E} | ||
| →62 | {<x, sg(νB(x)-νA(x)), μA(x).sg(νB(x)-νA(x))>|x ∈ E} | ||
| →63 | {<x, 1-(1-νA(x)).sg(νB(x)-νA(x)), μA(x).sg(νB(x)-νA(x))>|x ∈ E} | ||
| →64 | {<x, μB(x)+νB(x).νA(x), νB(x).μA(x)>|x ∈ E} | ||
| →65 | {<x, 1-(1-min(μB(x),νA(x))).sg(νB(x)-νA(x)), max(νB(x),μA(x)).sg(νB(x)-νA(x)).sg(μA(x)-μB(x))>|x ∈ E} | ||
| →66 | {<x, μB(x)+νB(x)2νA(x), νB(x).μB(x)+νB(x)2μA(x)>|x ∈ E} | ||
| →67 | {<x, νA(x).sg(1-νB(x))+sg(1-νB(x)).(sg(1-νA(x))+μB(x).sg(1-νA(x))), μA(x).sg(1-νB(x))+νB(x).sg(1-νB(x)).sg(1-νA(x))>|x ∈ E} | ||
| →68 | {<x, 1-(1-νA(x)).sg(νB(x)-νA(x)), μA(x).sg(νB(x)-νA(x)).sg(μA(x)-μB(x))>|x ∈ E} | ||
| →69 | {<x, 1-(1-νA(x)).sg(νB(x)-νA(x))-μA(x).sg(νB(x)-νA(x)).sg(μA(x)-μB(x)), μA(x).sg(μA(x)-μB(x))>|x ∈ E} | ||
| →70 | {<x, max(sg((νB(x)),νA(x)), min(sg(νB(x)),μA(x))>|x ∈ E} | ||
| →71 | {<x, max(μB(x),νA(x)), min(νB(x).μB(x)+νB(x)2,μA(x))>|x ∈ E} | ||
| →72 | {<x, max(μB(x),νA(x)), min(1-μB(x),μA(x))>|x ∈ E} | ||
| →73 | {<x, max(1-max(sg(νB(x)),sg(1-μB(x))),νA(x)), min(sg(1-μB(x)),μA(x))>|x ∈ E} | ||
| →74 | {<x, max(sg(νB(x)),sg(νA(x))), min(sg(νB(x)),sg(νA(x)))>|x ∈ E} | ||
| →75 | {<x, max(μB(x),νA(x).(νA(x)+μA(x))), min(νB(x).(νB(x)+μB(x)),μA(x).(νA(x)2+μA(x))+νA(x).μA(x))>|x ∈ E} | ||
| →76 | {<x, max(μB(x),1-μA(x)), min(1-μB(x),μA(x))>|x ∈ E} | ||
| →77 | {<x, 1-min(sg(1-μB(x)),sg(1-μA(x))), min(sg(1-μB(x)),sg(1-μA(x)))>|x ∈ E} | ||
| →78 | {<x, max(sg(1-μB(x)),νA(x)), min(sg(νB(x)),μA(x))>|x ∈ E} | ||
| →80 | {<x, max(sg(1-μB(x)),νA(x)), min(νB(x),μA(x))>|x ∈ E} | ||
| →81 | {<x, max(sg(1-μB(x)),sg(1-νA(x))), min(νB(x),sg(1-μA(x)))>|x ∈ E} | ||
| →82 | {<x, max(1-νB(x),min(νB(x),1-μA(x))), min(νB(x),μA(x))>|x ∈ E} | ||
| →83 | {<x, sg(νB(x)+μA(x)-1), μA(x).sg(νB(x)+μA(x)-1)>|x ∈ E} | ||
| →84 | {<x, 1-μA(x).sg(νB(x)+μA(x)+1), μA(x).sg(νB(x)+μA(x)+1)>|x ∈ E} | ||
| →85 | {<x, 1-νB(x)+νB(x)2.(1-μA(x)), νB(x).(1-νB(x))+νB(x)2>|x ∈ E} | ||
| →86 | {<x, (1-μA(x)).sg(1-νB(x))+sg(1-νB(x))sg(μA(x)+min(1-νB(x),sg(μA(x)))), μA(x).sg(1-νB(x))+νB(x).sg(1-νB(x)).sg(μA(x))>|x ∈ E} | ||
| →87 | {<x, max(sg(νB(x)),1-μA(x)), min(sg(νB(x)),μA(x))>|x ∈ E} | ||
| →88 | {<x, max(sg(νB(x)),sg(1-μA(x))), min(sg(νB(x)),sg(1-μA(x)))>|x ∈ E} | ||
| →89 | {<x, max(sg(νB(x)),1-μA(x)), min(νB(x),μA(x))>|x ∈ E} | ||
| →90 | {<x, max(sg(νB(x)),sg(μA(x))), min(νB(x),sg(1-μA(x)))>|x ∈ E} | ||
| →91 | {<x, max(μB(x),min(1-μB(x),νA(x))), 1-max(μB(x),νA(x))>|x ∈ E} | ||
| →92 | {<x, sg(1-μB(x)-νA(x)), min(1-νA(x),sg(1-μB(x)-νA(x)))>|x ∈ E} | ||
| →93 | {<x, 1-min(1-νA(x),sg(1-μB(x)-νA(x))), min(1-νA(x),sg(1-μB(x)-νA(x)))>|x ∈ E} | ||
| →94 | {<x, μB(x)+(1-μB(x))2.νA(x)), (1-μB(x)).μB(x)+(1-μB(x))2.(1-νA(x))>|x ∈ E} | ||
| →95 | {<x, min(νA(x),sg(μB(x)))+sg(μB(x)).(sg(1-νA(x))+min(μB(x),sg(1-νA(x)))), min(1-νA(x),sg(μB(x)))+min(min(1-μB(x),sg(μB(x))),sg(1-νA(x)))>|x ∈ E} | ||
| →96 | {<x, max(sg(1-μB(x)),νA(x)), min(sg(1-μB(x)),1-νA(x)>|x ∈ E} | ||
| →97 | {<x, max(sg(1-μB(x)),sg(νA(x))), min(sg(1-μB(x)),sg(νA(x)))>|x ∈ E} | ||
| →98 | {<x, max(sg(1-μB(x)),νA(x)), 1-max(μB(x),νA(x))>|x ∈ E} | ||
| →99 | {<x, max(sg(1-μB(x)),sg(1-νA(x))), min(1-μB(x),sg(νA(x)))>|x ∈ E} | ||
| →100 | {<x, max(min(νA(x),sg(μA(x))),μB(x)), min(min(μA(x),sg(νA(x))),νB(x))>|x ∈ E} | ||
| →101 | {<x, max(min(νA(x),sg(μA(x))),min(μB(x),sg(νB(x)))), min(min(μA(x),sg(νA(x))),min(νB(x),sg(μB(x))))>|x ∈ E} | ||
| →102 | {<x, max(νA(x),min(μB(x),sg(νB(x)))), min(μA(x),min(νB(x),sg(μB(x))))>|x ∈ E} | ||
| →103 | {<x, max(min(1-μA(x),sg(μA(x))),1-νB(x)), min(μA(x),sg(1-μA(x)),νB(x))>|x ∈ E} | ||
| →104 | {<x, max(min(1-μA(x),sg(μA(x))),min(1-νB(x),sg(νB(x)))), min(min(μA(x),sg(1-μA(x))),min(νB(x),sg(1-νB(x))))>|x ∈ E} | ||
| →105 | {<x, max(1-μA(x),min(1-νB(x),sg(νB(x)))), min(μA(x),min(νB(x),sg(1-νB(x))))>|x ∈ E} | ||
| →106 | {<x, max(min(νA(x),sg(1-νA(x))),μB(x)), min(min(1-νA(x),sg(νA(x))),1-μB(x))>|x ∈ E} | ||
| →107 | {<x, max(min(νA(x),sg(1-νA(x))),min(μB(x),sg(1-μB(x)))), min(min(1-νA(x),sg(νA(x))),min(1-μB(x),sg(μB(x))))>|x ∈ E} | ||
| →108 | {<x, max(νA(x),min(μB(x),sg(1-μB(x)))), min(1-νA(x),min(1-μB(x),sg(μB(x))))>|x ∈ E} | ||
| →109 | {<x, νA(x)+min(sg(1-μA(x)),μB(x)), μA(x).νA(x)+min(sg(1-μA(x)),νB(x))>|x ∈ E} | ||
| →110 | {<x, max(νA(x),μB(x)), min(μA(x).νA(x)+sg(1-μA(x)),νB(x))>|x ∈ E} | ||
| →111 | {<x, max(νA(x),μB(x).νB(x)+sg(1-μB(x))), min(μA(x).νA(x)+sg(1-μA(x)),νB(x).(μB(x).νB(x)+sg(1-μB(x)))+sg(1-νB(x)))>|x ∈ E} | ||
| →112 | {<x, νA(x)+μB(x)-νA(x).μB(x), μA(x).νA(x)+sg(1-μA(x)).νB(x)>|x ∈ E} | ||
| →113 | {<x, νA(x)+(μB(x).νB(x)-νA(x).(μB(x).νB(x)+sg(1-μB(x))), (μA(x).νA(x)+sg(1-μA(x))).(νB(x).(μB(x).νB(x)+sg(1-μB(x)))+sg(1-νB(x)))>|x ∈ E} | ||
| →114 | {<x, 1-μA(x)+min(sg(1-μA(x)),1-νB(x)), μA(x).(1-μA(x))+min(sg(1-μA(x)),νB(x))>|x ∈ E} | ||
| →115 | {<x, 1-min(μA(x),νB(x)), min(μA(x)(1-μA(x))+sg(1-μA(x)),νB(x))>|x ∈ E} | ||
| →116 | {<x, max(1-μA(x),(1-νB(x)).νB(x)+sg(νB(x))), min(μA(x).(1-μA(x))+sg(1-μA(x)),νB(x).((1-νB(x)).νB(x)+sg(νB(x)))+sg(1-νB(x)))>|x ∈ E} | ||
| →117 | {<x, 1-μA(x)-νB(x)+μA(x).νB(x), (μA(x).(1-μA(x))+sg(1-μA(x))).νB(x)>|x ∈ E} | ||
| →118 | {<x, (1-μA(x)).sg(νB(x))+μA(x).νB(x).(1-νB(x)), (μA(x)-μA(x)2+sg(1-μA(x))).((1-νB(x)).νB(x)2+sg(1-νB(x)))+sg(1-νB(x))(x))>|x ∈ E} | ||
| →119 | {<x, νA(x)+min(sg(νA(x)),μB(x)), (1-νA(x)).νA(x)+min(sg(νA(x)),1-μB(x))>|x ∈ E} | ||
| →120 | {<x, max(νA(x),μB(x)), min((1-νA(x)).νA(x)+sg(νA(x)),1-μB(x))>|x ∈ E} | ||
| →121 | {<x, max(νA(x),μB(x).(1-μB(x))+sg(1-μB(x))), min((1-νA(x)).νA(x)+sg(νA(x)),(1-μB(x)).(μB(x).(1-μB(x))+sg(1-μB(x)))+sg(μB(x)))>|x ∈ E} | ||
| →122 | {<x, νA(x)+μB(x)-νA(x).μB(x), ((1-νA(x)).νA(x)+sg(νA(x))).(1-μB(x))>|x ∈ E} | ||
| →123 | {<x, νA(x)+μB(x).(1-μB(x)-νA(x).(μB(x).(1-μB(x))+sg(1-μB(x))), ((1-νA(x)).νA(x)+sg(νA(x))).(((1-μB(x)).(μB(x).(1-μB(x))+sg(1-μB(x))))+sg(μB(x)))>|x ∈ E} | ||
| →124 | {<x, μB(x)+min(sg(1-νB(x)),νA(x)), νB(x).μB(x)+min(sg(1-νB(x)),μA(x))>|x ∈ E} | ||
| →125 | {<x, max(μB(x),νA(x)), min(νB(x).μB(x)+sg(1-νB(x)),μA(x))>|x ∈ E} | ||
| →126 | {<x, max(μB(x),νA(x).μA(x)+sg(1-νA(x))), min(νB(x).μB(x)+sg(1-νB(x)),μA(x).(νA(x).μA(x)+sg(1-νA(x)))+sg(1-μA(x)))>|x ∈ E} | ||
| →127 | {<x, μB(x)+νA(x)-μB(x).νA(x), (νB(x).μB(x)+sg(1-νB(x))).μA(x)>|x ∈ E} | ||
| →128 | {<x, μB(x)+νA(x).μA(x)-μB(x).(νA(x).μA(x)+sg(1-νA(x))), (νB(x).μB(x)+sg(1-νB(x))).(μA(x).(νA(x).μA(x)+sg(1-νA(x)))+sg(1-μA(x)))>|x ∈ E} | ||
| →129 | {<x, 1-νB(x)+min(sg(1-νB(x)),1-μA(x)), νB(x).(1-νB(x))+min(sg(1-νB(x)),μA(x))>|x ∈ E} | ||
| →130 | {<x, 1-min(νB(x),μA(x)), min(νB(x).(1-νB(x))+sg(1-νB(x)),μA(x))>|x ∈ E} | ||
| →131 | {<x, max(1-νB(x),(1-μA(x)).μA(x)+sg(μA(x))), min(νB(x).(1-νB(x))+sg(1-νB(x)),μA(x).((1-μA(x)).μA(x)+sg(μA(x)))+sg(1-μA(x)))>|x ∈ E} | ||
| →132 | {<x, 1-μA(x).νB(x), (νB(x).(1-νB(x))+sg(1-νB(x))).μA(x)>|x ∈ E} | ||
| →133 | {<x, 1-νB(x)+(1-μA(x)).μA(x)-(1-νB(x)).((1-μA(x)).μA(x)+sg(μA(x))), (νB(x).(1-νB(x))+sg(1-νB(x))).(μA(x).((1-μA(x)).μA(x)+sg(μA(x)))+sg(1-μA(x)))>|x ∈ E} | ||
| →134 | {<x, μB(x)+min(sg(μB(x)),νA(x)), (1-μB(x)).μB(x)+min(sg(μB(x)),1-νA(x))>|x ∈ E} | ||
| →135 | {<x, max(μB(x),νA(x)), min((1-μB(x)).μB(x)+sg(μB(x)),1-νA(x))>|x ∈ E} | ||
| →136 | {<x, max(μB(x),νA(x).(1-νA(x))+sg(1-νA(x))), min((1-μB(x)).μB(x)+sg(μB(x)),(1-νA(x)).(νA(x).(1-νA(x))+sg(1-νA(x)))+sg(νA(x)))>|x ∈ E} | ||
| →137 | {<x, μB(x)+νA(x)-μB(x).νA(x), ((1-μB(x)).μB(x)+sg(μB(x))).(1-νA(x))>|x ∈ E} |
Alternative separated view
References
- On some properties of intuitionistic fuzzy implications, Michał Baczyński, 2003
- Intuitionistic fuzzy implications and Modus Ponens, Krassimir Atanassov, 2005
- A property of intuitionistic fuzzy implications, Yun Shi and Violeta Tasseva, 2005
- On some intuitionistic fuzzy implications, Krassimir Atanassov, 2006
- On a new intuitionistic fuzzy implication of Gaines-Rescher's type, Beloslav Riečan, Krassimir Atanassov, 2007
- A study on some intuitionistic fuzzy implications, Violeta Tasseva, Desislava Peneva, 2007
- On intuitionistic fuzzy subtraction, generated by an implication from Kleene-Dienes type, Lilija Atanassova, 2009
- A new intuitionistic fuzzy implication, Lilija Atanassova, 2009
- Intuitionistic fuzzy implications and axioms for implications, Krassimir Atanassov and Dimitar Dimitrov, 2010
- Four modal forms of intuitionistic fuzzy implication →@ and two related intuitionistic fuzzy negations. Part 1, Lilija Atanassova, 2010
- Some Remarks about L. Atanassova’s Paper “A New Intuitionistic Fuzzy Implication”, Piotr Dworniczak, 2010
- On the basic properties of the negations generated by some parametric intuitionistic fuzzy implications, Piotr Dworniczak, 2011
- On some two-parametric intuitionistic fuzzy implications, Piotr Dworniczak, 2011
- Second Zadeh's intuitionistic fuzzy implication, Krassimir Atanassov, 2011