As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Implications over intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
No edit summary
Line 155: Line 155:
|
|
| &#123;&#60;x, <font color=green>1-min(sg(1-ν<sub>A</sub>(x)),{{overline|sg}}(1-ν<sub>B</sub>(x)))</font>, <font color=red>min(sg(1-ν<sub>A</sub>(x)),{{overline|sg}}(1-ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
| &#123;&#60;x, <font color=green>1-min(sg(1-ν<sub>A</sub>(x)),{{overline|sg}}(1-ν<sub>B</sub>(x)))</font>, <font color=red>min(sg(1-ν<sub>A</sub>(x)),{{overline|sg}}(1-ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| →<sub>24</sub>
|
|
| &#123;&#60;x, <font color=green>{{overline|sg}}(μ<sub>A</sub>(x)-μ<sub>B</sub>(x)).{{overline|sg}}(ν<sub>B</sub>(x)-ν<sub>A</sub>(x))</font>, <font color=red>sg(μ<sub>A</sub>(x)-μ<sub>B</sub>(x)).sg(ν<sub>B</sub>(x)-ν<sub>A</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|}
|}



Revision as of 22:10, 12 November 2013

For the various definitions of implication of over intuitionistic fuzzy sets, the functions sg(x) and sg(x) have been used:

[math]\displaystyle{ \text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \gt 0 \\ 0 & \text{if } x \leq 0 \end{array}, }[/math]   [math]\displaystyle{ \overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \lt 0 \\ 0 & \text{if } x \geq 0 \end{array}. }[/math]

ρ== List of intuitionistic fuzzy implications ==

No. Ref. Year Implication
1 {<x, max(νA(x),min(μA(x),μB(x))), min(μA(x),νB(x))>|x ∈ E}
2 {<x, sgA(x)-μB(x)), νB(x).sg(μA(x)-μB(x))>|x ∈ E}
3 {<x, 1-(1-μ(x)).sg(μA(x)-μB(x)), νB.sg(μA(x)-μB(x)) >|x ∈ E}
4 {<x, max(νA(x),μB(x)), min(μA(x),νB(x))>|x ∈ E}
5 {<x, min(1,νA(x)+μB(x)), max(0,μA(x)+νB(x)-1)>|x ∈ E}
6 {<x, νA(x)+μA(x)μB(x), μA(x)νB(x)>|x ∈ E}
7 {<x, min(max(νA(x),μB(x)),max(μA(x),νA(x)), max(μB(x),νB(x))), max(min(μA(x),νB(x)), min(μA(x),νA(x)),min(μB(x),νB(x)))>|x ∈ E}
8 {<x, 1-(1-min(νA(x),μB(x))).sg(μA(x)-μB(x)), max(μA(x),νB(x)).sg(μA(x)-μB(x)),sg(νB(x)-νA(x))>|x ∈ E}
9 {<x, νA(x)+μA(x)2μB(x), μA(x)νA(x)+μA(x)2νB(x)>|x ∈ E}
10 {<x, μA(x).sg(1-μA(x))+sg(1-μA(x)).(sg(1-μB(x))+νA(x).sg(1-μB(x))), νB.sg(1-μA(x))+μA(x).sg(1-μA(x)).sg(1-μB(x))>|x ∈ E}
11 {<x, 1-(1-μB(x)).sg(μA(x)-μB(x)), νB(x).sg(μA(x)-μB(x)).sg(νB(x)-νA(x))>|x ∈ E}
12 {<x, max(νA(x),μB(x)), 1-max(νA(x),μB(x))>|x ∈ E}
13 {<x, νA(x)+μB(x)-νA(x).μB(x), μA(x).νB(x)>|x ∈ E}
14 {<x, 1-(1-μB(x)).sg(μA(x)-μB(x))-νB(x).sgA(x)-μB(x)).sg(νB(x)-νA(x)), νB(x).sg(νB(x)-νA(x))>|x ∈ E}
15 {<x, 1-sg(μA(x)-μB(x)).sg(νB(x)-νA(x)), sg(sgA(x)-μB(x))+sgB(x)-νA(x)))>|x ∈ E}
16 {<x, max(sgA(x)),μB(x)), min(sg(μA(x)),νB(x))>|x ∈ E}
17 {<x, max(νA(x),μB(x)), min(μA(x).νA(x)+μA(x)2B(x))>|x ∈ E}
18 {<x, max(νA(x),μB(x)), min(1-νA(x),νB(x))>|x ∈ E}
19 {<x, max(1-sg(sg(μA(x))+sg(1-νA(x))),μB(x)), min(sg(1-νA(x)),νB(x))>|x ∈ E}
20 {<x, max(sgA(x)),sg(μA(x)))), min(sg(μA(x)),sgB(x)))>|x ∈ E}
21 {<x, max(νA(x),μB(x).(μB(x)+νB(x))), min(μA(x).(μA(x)+νA(x)),νB(x).(μB(x)2B(x)+μB(x).νB(x)))>|x ∈ E}
22 {<x, max(νA(x),1-νB(x)), min(1-νA(x),νB(x))>|x ∈ E}
23 {<x, 1-min(sg(1-νA(x)),sg(1-νB(x))), min(sg(1-νA(x)),sg(1-νB(x)))>|x ∈ E}
24 {<x, sgA(x)-μB(x)).sgB(x)-νA(x)), sg(μA(x)-μB(x)).sg(νB(x)-νA(x))>|x ∈ E}


Alternative separated view

References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.