As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Subtractions over intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
Line 25: Line 25:


|- valign="top"
|- valign="top"
| &#8212;<sub>1</sub>&#8242;
| &#8212;<sub>01</sub>&#8242;
|
|
|
|
Line 31: Line 31:


|- valign="top"
|- valign="top"
| &#8212;<sub>2</sub>&#8242;
| &#8212;<sub>02</sub>&#8242;
|
|
|
|
Line 37: Line 37:


|- valign="top"
|- valign="top"
| &#8212;<sub>3</sub>&#8242;
| &#8212;<sub>03</sub>&#8242;
|
|
|
|
Line 43: Line 43:


|- valign="top"
|- valign="top"
| &#8212;<sub>4</sub>&#8242;
| &#8212;<sub>04</sub>&#8242;
|
|
|
|
Line 50: Line 50:


|- valign="top"
|- valign="top"
| &#8212;<sub>5</sub>&#8242;
| &#8212;<sub>05</sub>&#8242;
|
|
|
|
Line 56: Line 56:


|- valign="top"
|- valign="top"
| &#8212;<sub>6</sub>&#8242;
| &#8212;<sub>06</sub>&#8242;
|
|
|
|
Line 62: Line 62:


|- valign="top"
|- valign="top"
| &#8212;<sub>7</sub>&#8242;
| &#8212;<sub>07</sub>&#8242;
|
|
|
|
Line 68: Line 68:


|- valign="top"
|- valign="top"
| &#8212;<sub>8</sub>&#8242;
| &#8212;<sub>08</sub>&#8242;
|
|
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>09</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>10</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>11</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>12</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x).(μ<sub>B</sub>(x) + ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).(ν<sub>B</sub>(x)<sup>2</sup> + μ<sub>B</sub>(x) + μ<sub>B</sub>(x).ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>13</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), sg(1 - μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>14</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>15</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>16</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>17</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>18</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x), sg(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), min(μ<sub>B</sub>(x), sg(ν<sub>B</sub>(x))))</font>&#62;&#124;x &#8712; E&#125;


|}
|}
Line 97: Line 157:


|- valign="top"
|- valign="top"
| &#8212;<sub>1</sub>&#8242;
| &#8212;<sub>01</sub>&#8242;
|  
|  
|  
|  
Line 104: Line 164:


|- valign="top"
|- valign="top"
| &#8212;<sub>2</sub>&#8242;
| &#8212;<sub>02</sub>&#8242;
|  
|  
|  
|  
Line 111: Line 171:


|- valign="top"
|- valign="top"
| &#8212;<sub>3</sub>&#8242;
| &#8212;<sub>03</sub>&#8242;
|  
|  
|  
|  
Line 118: Line 178:


|- valign="top"
|- valign="top"
| &#8212;<sub>4</sub>&#8242;
| &#8212;<sub>04</sub>&#8242;
|
|
|
|
Line 125: Line 185:


|- valign="top"
|- valign="top"
| &#8212;<sub>5</sub>&#8242;
| &#8212;<sub>05</sub>&#8242;
|
|
|
|
Line 132: Line 192:


|- valign="top"
|- valign="top"
| &#8212;<sub>6</sub>&#8242;
| &#8212;<sub>06</sub>&#8242;
|
|
|
|
Line 139: Line 199:


|- valign="top"
|- valign="top"
| &#8212;<sub>7</sub>&#8242;
| &#8212;<sub>07</sub>&#8242;
|
|
|
|
Line 146: Line 206:


|- valign="top"
|- valign="top"
| &#8212;<sub>8</sub>&#8242;
| &#8212;<sub>08</sub>&#8242;
|
|
|
|
| <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>
| <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>09</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>10</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>11</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>12</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x).(μ<sub>B</sub>(x) + ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).(ν<sub>B</sub>(x)<sup>2</sup> + μ<sub>B</sub>(x) + μ<sub>B</sub>(x).ν<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>13</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), sg(1 - μ<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>14</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>15</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>16</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>17</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>18</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x), sg(μ<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), min(μ<sub>B</sub>(x), sg(ν<sub>B</sub>(x))))</font>


|}
|}

Revision as of 20:38, 22 August 2011

List of intuitionistic fuzzy subtractions

sg(x) = { 1 if x > 0
0 if x ≤ 0
sg(x) = { 1 if x < 0
0 if x ≥ 0
No. Ref. Year Subtraction
01 {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E}
02 {<x, min(μA(x), sgB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
03 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E}
04 {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}


05 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - νB(x)))>|x ∈ E}
06 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
07 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), μB(x))>|x ∈ E}
08 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x))>|x ∈ E}
09 {<x, min(μA(x), sgB(x))), max(νA(x), μB(x))>|x ∈ E}
10 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), 1 - νB(x))>|x ∈ E}
11 {<x, min(μA(x), sg(νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
12 {<x, min(μA(x), νB(x).(μB(x) + νB(x))), max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))>|x ∈ E}
13 {<x, min(μA(x), sg(1 - μB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
14 {<x, min(μA(x), sg(νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
15 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
16 {<x, min(μA(x), sgB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
17 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
18 {<x, min(μA(x), νB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(νB(x))))>|x ∈ E}

Alternative separated view

No. Ref. Year Subtraction:

{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E}

No. Ref. Year Subtraction MEMBERSHIP expression
Subtraction NON-MEMBERSHIP expression
01 min(μA(x), νB(x)) max(νA(x), μB(x))
02 min(μA(x), sgB(x))) max(νA(x), sg(μB(x)))
03 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + μB(x)2)
04 min(μA(x), νB(x)) max(νA(x), 1 - νB(x))
05 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - νB(x)))
06 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(μB(x)))
07 min(μA(x), sg(1 - νB(x))) max(νA(x), μB(x))
08 min(μA(x), 1 - μB(x)) max(νA(x), μB(x))
09 min(μA(x), sgB(x))) max(νA(x), μB(x))
10 min(μA(x), sg(1 - νB(x))) max(νA(x), 1 - νB(x))
11 min(μA(x), sg(νB(x))) max(νA(x), sgB(x)))
12 min(μA(x), νB(x).(μB(x) + νB(x))) max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))
13 min(μA(x), sg(1 - μB(x))) max(νA(x), sg(1 - μB(x)))
14 min(μA(x), sg(νB(x))) max(νA(x), sg(1 - μB(x)))
15 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - μB(x)))
16 min(μA(x), sgB(x))) max(νA(x), sg(1 - μB(x)))
17 min(μA(x), sg(1 - νB(x))) max(νA(x), sgB(x)))
18 min(μA(x), νB(x), sg(μB(x))) max(νA(x), min(μB(x), sg(νB(x))))

Approaches to defining intuitionistic fuzzy subtractions

References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.