Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Closure and interior: Difference between revisions
No edit summary |
|||
Line 31: | Line 31: | ||
== Open and closed IFSs == | == Open and closed IFSs == | ||
An IFS <math>A</math> is called '''open''' in <math>E</math> if <math>A = I(A)</math. <math>A</math> is called '''closed''' in <math>E</math> if <math>A = C(A)</math>. | An IFS <math>A</math> is called '''open''' in <math>E</math> if <math>A = I(A)</math>. <math>A</math> is called '''closed''' in <math>E</math> if <math>A = C(A)</math>. | ||
The following statement is valid: If <math>A</math> is an open (''closed'') IFS, then <math>A</math> is closed (''open''), too. | The following statement is valid: If <math>A</math> is an open (''closed'') IFS, then <math>A</math> is closed (''open''), too. |
Revision as of 14:14, 15 April 2009
Closure and interior are two topological operators, defined over intuitionistic fuzzy sets, as follows.
Let [math]\displaystyle{ A \subset E }[/math] be an IFS. Then,
[math]\displaystyle{ C(A) = \lbrace \langle x, \max_{y \in E} \mu_A(y), \min_{y \in E} \nu_A(y) \rangle \ | \ x \in E \rbrace }[/math]
[math]\displaystyle{ I(A) = \lbrace \langle x, \min_{y \in E} \mu_A(y), \max_{y \in E} \nu_A(y) \rangle \ | \ x \in E \rbrace }[/math]
are respectively called closure and interior.
The following basic statements are valid:
- [math]\displaystyle{ C(A) }[/math] and [math]\displaystyle{ I(A) }[/math] are intuitionistic fuzzy sets.
- [math]\displaystyle{ I(A) \subset A \subset C(A) }[/math]
- [math]\displaystyle{ C(C(A)) \ = \ C(A) }[/math]
- [math]\displaystyle{ C(I(A)) \ = \ I(A) }[/math]
- [math]\displaystyle{ I(C(A)) \ = \ C(A) }[/math]
- [math]\displaystyle{ I(I(A)) \ = \ I(A) }[/math]
When operations and relations are applied over the closure and interior operators, the following valid statements can be formulated:
- [math]\displaystyle{ C(A \cap B) \ = \ C(A) \cap C(B) }[/math]
- [math]\displaystyle{ C(A \cup B) \ \subset \ C(A) \cup C(B) }[/math]
- [math]\displaystyle{ I(A \cap B) \ \supset \ I(A) \cap I(B) }[/math]
- [math]\displaystyle{ I(A \cup B) \ = \ I(A) \cup I(B) }[/math]
- [math]\displaystyle{ \overline{I(\overline{A})} \ = \ C(A) }[/math]
Further, when the modal operators necessity and possibility are applied, it holds that:
- [math]\displaystyle{ \Box (C(A)) \ = \ C(\Box(A)) }[/math]
- [math]\displaystyle{ \Box (I(A)) \ = \ I(\Box(A)) }[/math]
- [math]\displaystyle{ \Diamond (C(A)) \ = \ C(\Diamond (A)) }[/math]
- [math]\displaystyle{ \Diamond (I(A)) \ = \ I(\Diamond (A)) }[/math]
Open and closed IFSs
An IFS [math]\displaystyle{ A }[/math] is called open in [math]\displaystyle{ E }[/math] if [math]\displaystyle{ A = I(A) }[/math]. [math]\displaystyle{ A }[/math] is called closed in [math]\displaystyle{ E }[/math] if [math]\displaystyle{ A = C(A) }[/math].
The following statement is valid: If [math]\displaystyle{ A }[/math] is an open (closed) IFS, then [math]\displaystyle{ A }[/math] is closed (open), too.
If [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] are intuitionistic fuzzy sets over [math]\displaystyle{ E }[/math], the following statements hold about them:
- If [math]\displaystyle{ A \subset B }[/math], then [math]\displaystyle{ I(A) \subset I(B) }[/math] and [math]\displaystyle{ C(A) \subset C(B) }[/math].
- If [math]\displaystyle{ B }[/math] is open and [math]\displaystyle{ B \subset A }[/math], then [math]\displaystyle{ B \subset I(A) }[/math].
- If [math]\displaystyle{ B }[/math] is closed and [math]\displaystyle{ A \subset B }[/math], then [math]\displaystyle{ C(A) \subset B }[/math].