As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:The Hauber's law with intuitionistic fuzzy implications: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
m fix link
 
Line 53: Line 53:
# Angelova, N., & Atanassov, K. (2021). [[Issue:Research on intuitionistic fuzzy negations|Research on intuitionistic fuzzy negations]]. Notes on Intuitionistic Fuzzy Sets, 27(3), 18–31.
# Angelova, N., & Atanassov, K. (2021). [[Issue:Research on intuitionistic fuzzy negations|Research on intuitionistic fuzzy negations]]. Notes on Intuitionistic Fuzzy Sets, 27(3), 18–31.
# Angelova, N., Atanassov, K., & Atanassova, V. (2022). [[Issue:Research on intuitionistic fuzzy implications. Part 2|Research on intuitionistic fuzzy implications. Part 2]]. Notes on Intuitionistic Fuzzy Sets, 28(2), 172–192.
# Angelova, N., Atanassov, K., & Atanassova, V. (2022). [[Issue:Research on intuitionistic fuzzy implications. Part 2|Research on intuitionistic fuzzy implications. Part 2]]. Notes on Intuitionistic Fuzzy Sets, 28(2), 172–192.
# Angelova, N., & Stoenchev, M. (2015/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
# Angelova, N., & Stoenchev, M. (2015/2016). [https://old.usb-bg.org/Bg/Annual_Informatics/2015-2016/SUB-Informatics-2015-2016-8-001-017.pdf Intuitionistic fuzzy conjunctions and disjunctions from first type]. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
# Angelova, N., & Stoenchev, M. (2017). [[Issue:Intuitionistic fuzzy conjunctions and disjunctions from third type|Intuitionistic fuzzy conjunctions and disjunctions from third type]]. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
# Angelova, N., & Stoenchev, M. (2017). [[Issue:Intuitionistic fuzzy conjunctions and disjunctions from third type|Intuitionistic fuzzy conjunctions and disjunctions from third type]]. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
# Angelova, N., Stoenchev, M., & Todorov, V. (2017). Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
# Angelova, N., Stoenchev, M., & Todorov, V. (2017). [[Issue:Intuitionistic fuzzy conjunctions and disjunctions from second type|Intuitionistic fuzzy conjunctions and disjunctions from second type]]. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
# Atanassov, K. (1997). [[Issue:The Hauber's law is an intuitionistic fuzzy tautology|The Hauber's law is an intuitionistic fuzzy tautology]]. Notes on Intuitionistic Fuzzy Sets, 3(2), 82–84.
# Atanassov, K. (1997). [[Issue:The Hauber's law is an intuitionistic fuzzy tautology|The Hauber's law is an intuitionistic fuzzy tautology]]. Notes on Intuitionistic Fuzzy Sets, 3(2), 82–84.
# Atanassov, K. (2017). [[Intuitionistic Fuzzy Logics]]. Springer, Cham.
# Atanassov, K. (2017). [[Intuitionistic Fuzzy Logics]]. Springer, Cham.

Latest revision as of 12:53, 29 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/28/3/271-279
Title of paper: On the intuitionistic fuzzy modal feeble topological structures
Author(s):
Nora Angelova
Faculty of Mathematics and Informatics, Sofia University,, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
nora.angelova@fmi.uni-sofia.bg
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Alžbeta Michalíková
Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, Banska Bystrica, Slovakia
Mathematical Institute, Slovak Academy of Sciences, Dumbierska 1, Banska Bystrica, Slovakia
alzbeta.michalikova@umb.sk
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
krat@bas.bg
Presented at: 25th ICIFS, Sofia, 9—10 September 2022
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 3, pages 271–279
DOI: https://doi.org/10.7546/nifs.2022.28.3.271-279
Download:  PDF (137  Kb, File info)
Abstract: 25 years ago, in [7], it was proved that the Hauber's law is an intuitionistic fuzzy tautology. In this case, the used implication was the standard intuitionistic fuzzy one. In the present paper, we check which intuitionistic fuzzy implications, defined during these 25 years, satisfy the Hauber's law as a tautology and which if them – as an intuitionistic fuzzy tautology.
Keywords: Hauber's law, Intuitionistic fuzzy implication, Intuitionistic fuzzy tautology, Tautology.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Atanassov, K. (2021). Research on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 27(2), 20–93.
  2. Angelova, N., & Atanassov, K. (2021). Research on intuitionistic fuzzy negations. Notes on Intuitionistic Fuzzy Sets, 27(3), 18–31.
  3. Angelova, N., Atanassov, K., & Atanassova, V. (2022). Research on intuitionistic fuzzy implications. Part 2. Notes on Intuitionistic Fuzzy Sets, 28(2), 172–192.
  4. Angelova, N., & Stoenchev, M. (2015/2016). Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 1–17.
  5. Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
  6. Angelova, N., Stoenchev, M., & Todorov, V. (2017). Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 13, 143–170.
  7. Atanassov, K. (1997). The Hauber's law is an intuitionistic fuzzy tautology. Notes on Intuitionistic Fuzzy Sets, 3(2), 82–84.
  8. Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
  9. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  10. Kacprzyk, J., Cunderlikova, K., Angelova, N., & Atanassov, K. (2021). Modifications of the Goguen's intuitionistic fuzzy implication. Notes on Intuitionistic Fuzzy Sets, 27(4), 20–29.
  11. Mendelson, E. (1964). Introduction to Mathematical Logic. Princeton, NJ: D. Van Nostrand.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.