References:
|
- Atanassow K.T. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87-96.
- Atanassov K.T. (1988). Review and new results on intuitionistic fuzzy sets. IM-MFAIS-1.
- Atanassov K.T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33, 3-45.
- Barrett, C.R. and Pattanaik, P.K. (1990). Aggregation of fuzzy preferences. In J. Kacprzyk and M. Fedrizzi, (Eds.): Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht, pp. 155—162.
- Blin, J.M. and Whinston, A.P. (1973). Fuzzy sets and social choice. J. of Cybernetics 4, 17-22.
- Bustince H., Burillo P. (1996). Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 3, 293-303.
- Dubois D., Prade H. (1980). Fuzzy sets and Systems. New York.
- Fedrizzi, M., Kacprzyk, J. and Nurmi, H. (1993). Consensus degrees under fuzzy majorities and fuzzy preferences using OWA (ordered weighted average) operators, Control and Cybernetics, 22, 71—80.
- Kacprzyk, J. (1984). Collective decision making with a fuzzy majority rule, Proc. WOGSC Congress, AFCET, Paris, pp. 153-159.
- Kacprzyk, J. (1985a). Some 'commonsense solution concepts in group decision making via fuzzy linguistic quantifiers. In J. Kacprzyk and R.R. Yager (Eds.): Management Decision Support Systems Using Fuzzy Sets and Possibility Theory, Verlag TV*{U}V Rheinland, Cologne, pp. 125-135.
- Kacprzyk, J. (1985b). Group decision-making with a fuzzy majority via linguistic quantifiers. Part I: A consensory-like pooling; Part II: A competitive-like pooling, Cybernetics and Systems: an Int. J., 16, 119—129 (Part I), 131-144 (Part II).
- Kacprzyk, J. (1986). Group decision making with a fuzzy linguistic majority, Fuzzy Sets and Systems, 18, 105—118.
- Kacprzyk, J. (1987). On some fuzzy cores and 'soft' consensus measures in group decision making. In J.C. Bezdek (Ed.): The Analysis of Fuzzy Information, Vol. 2, CRC Press, Boca Raton, pp. 119-130.
- Kacprzyk, J. and Fedrizzi,M., Eds. (1990). Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht.
- Kacprzyk, J. and Fedrizzi, M. (1995). A fuzzy majority in group DM and consensus via the OWA operators with importance qualification, Proc. of dFT'95 — Current Issues in Fuzzy Technologies (Trento, Italy), pp. 128—137.
- Kacprzyk, J., Fedrizzi, M. and Nurmi, H. (1990). Group decision making with fuzzy majorities represented by linguistic quantifiers. In J.L. Verdegay and M. Delgado (Eds.): Approximate Reasoning Tools for Artificial Intelligence, Verlag TV*{U}V Rheinland, Cologne, pp. 126-145.
- Kacprzyk, J., Fedrizzi, M. and Nurmi, H. (1992). Group decision making and consensus under fuzzy preferences and fuzzy majority, Fuzzy Sets and Systems, 49,21-31.
- Kacprzyk, J. and Nurmi, H. (1989). Linguistic quantifiers and fuzzy majorities for more realistic and human-consistent group decision making. In G. Evans, W. Karwowski and M. Wilhelm (Eds.): Fuzzy Methodologies for Industrial and Systems Engineering, Elsevier, Amsterdam, pp. 267-281.
- Kacprzyk, J., Nurmi, H. and Fedrizzi, M., Eds. (1996). Consensus under Fuzziness, Kluwer, Boston.
- Kacprzyk, J. and Roubens, M., Eds. (1988). Non-Conventional Preference Relations in Decision Making, Springer—Verlag, Heidelberg.
- Nurmi, H. (1981). Approaches to collective decision making with fuzzy preference relations, Fuzzy Sets and Systems, 6, 249—259.
- Nurmi, H., Fedrizzi, M. and Kacprzyk, J. (1990). Vague notions in the theory of voting. In J. Kacprzyk and M. Fedrizzi (Eds.): Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht, pp. 43-52.
- Nurmi, H. and Kacprzyk, J. (1991). On fuzzy tournaments and their solution concepts in group decision making, Europ. J. of Operational Research, 51, 223-232.
- Tanino, T. (1984). Fuzzy preference orderings in group decision making, Fuzzy Sets and Systems, 12, 117-131.
- Tanino, T. (1990). On group decision making under fuzzy preferences. In J. Kacprzyk and M. Fedrizzi (Eds.): Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht, pp. 172—185.
- Zadeh, L.A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers and Maths with Appls, 9, 149—184.
|