As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Interval valued intuitionistic fuzzy primary ideal: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: {{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title...
 
m Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume"
 
Line 29: Line 29:
{{issue/data
{{issue/data
  | conference      =  
  | conference      =  
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/19/4|"Notes on IFS", Volume 19, 2013, Number 4]], pages 48—59
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/19/4|"Notes on Intuitionistic Fuzzy Sets", Volume 19, 2013, Number 4]], pages 48—59
  | file            = NIFS-19-4-48-59.pdf
  | file            = NIFS-19-4-48-59.pdf
  | format          = PDF
  | format          = PDF

Latest revision as of 17:54, 28 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/19/4/48-59
Title of paper: Interval valued intuitionistic fuzzy primary ideal
Author(s):
M. Palanivelrajan
Department of Mathematics, Government Arts College, Paramakudi – 623 707, Tamilnadu, India
palanivelrajan1975@gmail.com
K. Gunasekaran
Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-612 001, Tamilnadu, India
kgunasekaran1963@gmail.com
S. Nandakumar
Department of Mathematics, Government Arts College, Ariyalur –621 713, Tamilnadu, India
udmnanda@gmail.com
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 19, 2013, Number 4, pages 48—59
Download:  PDF (168  Kb, File info)
Abstract: The concept of fuzzy semiprimary ideal is extended by introducing intuitionistic fuzzy primary ideals as well as intuitionistic fuzzy semiprimary ideals in rings. Using this concept, Interval valued intuitionistic fuzzy primary ideal and Interval valued intuitionistic fuzzy semiprimary ideals is defined. Various properties of interval valued intuitionistic fuzzy primary ideals and interval valued intuitionistic fuzzy semiprimary ideals are proved. Finally, interval valued intuitionistic fuzzy Lie primary ideals and interval valued intuitionistic fuzzy lie semi primary ideals are defined, some properties are established
Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy primary ideal, Intuitionistic fuzzy semi-primary ideal, Interval valued intuitionistic fuzzy primary ideals, Interval valued intuitionistic fuzzy semi primary ideals, Interval valued intuitionistic fuzzy Lie primary ideals, Interval valued intuitionistic fuzzy lie semi primary ideals
AMS Classification: 03F55, 20N25, 08A72.
References:
  1. Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, No. 1, 87–96.
  2. Atanassov, K., Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 64, 1994, No. 2, 159–174.
  3. Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
  4. Atanassov, K. T, G. Gargov. Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 31, 1989, 343–349.
  5. Chakrabarty, K., R. Biswas, S. Nanda, A note on union and intersection of intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 3, 1995, No. 4, 34-39.
  6. Keyun Qin, Quanxi Qiao, Chaoping Chen, Some properties of fuzzy Lie algebras. The Journal of Fuzzy Mathematics, Vol. 9, 2001, No. 4, 985–989.
  7. Palanivelrajan, M, S. Nandakumar. Some properties of intuitionistic fuzzy primary and semiprimary ideals, Notes on Intuitionistic Fuzzy Sets, Vol. 18, 2012, No. 3, 68–74.
  8. Palanivelrajan, M, S. Nandakumar. Some operations of intuitionistic fuzzy primary and semiprimary ideal, Asian Journal of Algebra, Vol. 5, No. 2, 2012, 44–49.
  9. Rajes, K. Fuzzy semiprimary ideals of rings, Fuzzy Sets and Systems, Vol. 42, 1991, 263–272.
  10. Zadeh, L. A., Fuzzy sets, Information and Control, Vol. 8, 1965, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.