From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
|
|
Line 15: |
Line 15: |
| {{issue/data | | {{issue/data |
| | conference = | | | conference = |
| | issue = [[Notes on Intuitionistic Fuzzy Sets/16/3|"Notes on IFS", Volume 16 (2010) Number 3]], pages 22—27 | | | issue = [[Notes on Intuitionistic Fuzzy Sets/16/3|"Notes on Intuitionistic Fuzzy Sets", Volume 16 (2010) Number 3]], pages 22—27 |
| | file = NIFS-16-3-22-27.pdf | | | file = NIFS-16-3-22-27.pdf |
| | format = PDF | | | format = PDF |
Latest revision as of 17:19, 28 August 2024
shortcut
|
http://ifigenia.org/wiki/issue:nifs/16/3/22-27
|
Title of paper:
|
(α,β)-cut of intuitionistic fuzzy ideals
|
Author(s):
|
Dhiren Kumar Basnet
|
Department of Mathematics, Assam University, Silchar-788011, Assam, India
|
dkbasnet@rediffmail.com
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 16 (2010) Number 3, pages 22—27
|
Download:
|
PDF (161 Kb, File info)
|
Abstract:
|
For any Intuitionistic fuzzy set [math]\displaystyle{ A = {\lt x, \mu_A(x), \nu_A(x) | x \in E\gt } }[/math] of a set [math]\displaystyle{ E }[/math], we define a [math]\displaystyle{ (\alpha, \beta) }[/math]-cut of [math]\displaystyle{ A }[/math] as the crisp subset [math]\displaystyle{ \{ x \in E | \mu_A(x) \geq \alpha, \nu_A(x) \leq \beta \} }[/math] of [math]\displaystyle{ E }[/math]. In this paper some interesting properties of [math]\displaystyle{ (\alpha, \beta) }[/math]-cut of Intuitionistic fuzzy ideals of a ring were discussed.
|
Keywords:
|
Intuitionistic fuzzy set, Intuitionistic fuzzy ideal, (α,β)-cut
|
References:
|
- Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1986), no. 1, 87–96.
- Banerjee B. and Basnet. D. K., “Intuitionistic Fuzzy Subrings and Ideals”, J. of Fuzzy Mathematics, Vol. 11, No. 1, 2003 , 139 – 155.
- Basnet D. K., “Intuitionistic Fuzzy Ideals”, J. of Fuzzy Mathematics, Vol. 15, No. 4, 2007, 811 – 819.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|