Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Implications over intuitionistic fuzzy sets: Difference between revisions
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
\end{array}.</math> | \end{array}.</math> | ||
== List of intuitionistic fuzzy implications == | ρ== List of intuitionistic fuzzy implications == | ||
{| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;" | {| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;" | ||
Line 28: | Line 28: | ||
| | | | ||
| | | | ||
| {<x, <font color=green> {{overline|sg}}(μ<sub>A</sub>(x)- μ<sub>B</sub>(x))</font>, <font color=red> ν<sub>B</sub>(x).sg(μ<sub>A</sub>(x)-μ<sub>B</sub>(x))</font>>|x ∈ E} | | {<x, <font color=green> {{overline|sg}}(μ<sub>A</sub>(x)-μ<sub>B</sub>(x))</font>, <font color=red> ν<sub>B</sub>(x).sg(μ<sub>A</sub>(x)-μ<sub>B</sub>(x))</font>>|x ∈ E} | ||
|- valign="top" | |||
| →<sub>3</sub> | |||
| | |||
| | |||
| {<x, <font color=green> 1-(1-μ<sub></sub>(x)).sg(μ<sub>A</sub>(x)-μ<sub>B</sub>(x))</font>, <font color=red>ν<sub>B</sub>.sg(μ<sub>A</sub>(x)-μ<sub>B</sub>(x)) </font>>|x ∈ E} | |||
|- valign="top" | |||
| →<sub>4</sub> | |||
| | |||
| | |||
| {<x, <font color=green>max(ν<sub>A</sub>(x),μ<sub>B</sub>(x))</font>, <font color=red>min(μ<sub>A</sub>(x),ν<sub>B</sub>(x))</font>>|x ∈ E} | |||
|- valign="top" | |||
| →<sub>5</sub> | |||
| | |||
| | |||
| {<x, <font color=green>min(1,ν<sub>A</sub>(x)+μ<sub>B</sub>(x))</font>, <font color=red>max(0,μ<sub>A</sub>(x)+ν<sub>B</sub>(x)-1</font>>|x ∈ E} | |||
|} | |} | ||
=== Alternative separated view === | === Alternative separated view === |
Revision as of 18:04, 12 November 2013
For the various definitions of implication of over intuitionistic fuzzy sets, the functions sg(x) and sg(x) have been used:
[math]\displaystyle{ \text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \gt 0 \\ 0 & \text{if } x \leq 0 \end{array}, }[/math] [math]\displaystyle{ \overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \lt 0 \\ 0 & \text{if } x \geq 0 \end{array}. }[/math]
ρ== List of intuitionistic fuzzy implications ==
No. | Ref. | Year | Implication |
---|---|---|---|
→1 | {<x, max(νA(x),min(μA(x),μB(x))), min(μA(x),νB(x))>|x ∈ E} | ||
→2 | {<x, sg(μA(x)-μB(x)), νB(x).sg(μA(x)-μB(x))>|x ∈ E} | ||
→3 | {<x, 1-(1-μ(x)).sg(μA(x)-μB(x)), νB.sg(μA(x)-μB(x)) >|x ∈ E} | ||
→4 | {<x, max(νA(x),μB(x)), min(μA(x),νB(x))>|x ∈ E} | ||
→5 | {<x, min(1,νA(x)+μB(x)), max(0,μA(x)+νB(x)-1>|x ∈ E} |
Alternative separated view
References
- On some properties of intuitionistic fuzzy implications, Michał Baczyński, 2003
- Intuitionistic fuzzy implications and Modus Ponens, Krassimir Atanassov, 2005
- A property of intuitionistic fuzzy implications, Yun Shi and Violeta Tasseva, 2005
- On some intuitionistic fuzzy implications, Krassimir Atanassov, 2006
- On a new intuitionistic fuzzy implication of Gaines-Rescher's type, Beloslav Riečan, Krassimir Atanassov, 2007
- A study on some intuitionistic fuzzy implications, Violeta Tasseva, Desislava Peneva, 2007
- On intuitionistic fuzzy subtraction, generated by an implication from Kleene-Dienes type, Lilija Atanassova, 2009
- A new intuitionistic fuzzy implication, Lilija Atanassova, 2009
- Intuitionistic fuzzy implications and axioms for implications, Krassimir Atanassov and Dimitar Dimitrov, 2010
- Four modal forms of intuitionistic fuzzy implication →@ and two related intuitionistic fuzzy negations. Part 1, Lilija Atanassova, 2010
- Some Remarks about L. Atanassova’s Paper “A New Intuitionistic Fuzzy Implication”, Piotr Dworniczak, 2010
- On the basic properties of the negations generated by some parametric intuitionistic fuzzy implications, Piotr Dworniczak, 2011
- On some two-parametric intuitionistic fuzzy implications, Piotr Dworniczak, 2011
- Second Zadeh's intuitionistic fuzzy implication, Krassimir Atanassov, 2011