Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Subtractions over intuitionistic fuzzy sets: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 25: | Line 25: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>01</sub>′ | ||
| | | | ||
| | | | ||
Line 31: | Line 31: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>02</sub>′ | ||
| | | | ||
| | | | ||
Line 37: | Line 37: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>03</sub>′ | ||
| | | | ||
| | | | ||
Line 43: | Line 43: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>04</sub>′ | ||
| | | | ||
| | | | ||
Line 50: | Line 50: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>05</sub>′ | ||
| | | | ||
| | | | ||
Line 56: | Line 56: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>06</sub>′ | ||
| | | | ||
| | | | ||
Line 62: | Line 62: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>07</sub>′ | ||
| | | | ||
| | | | ||
Line 68: | Line 68: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>08</sub>′ | ||
| | | | ||
| | | | ||
| {<x, <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>>|x ∈ E} | | {<x, <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>>|x ∈ E} | ||
|- valign="top" | |||
| —<sub>09</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>10</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>11</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>12</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x).(μ<sub>B</sub>(x) + ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).(ν<sub>B</sub>(x)<sup>2</sup> + μ<sub>B</sub>(x) + μ<sub>B</sub>(x).ν<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>13</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), sg(1 - μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>14</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>15</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>16</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>17</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font>>|x ∈ E} | |||
|- valign="top" | |||
| —<sub>18</sub>′ | |||
| | |||
| | |||
| {<x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x), sg(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), min(μ<sub>B</sub>(x), sg(ν<sub>B</sub>(x))))</font>>|x ∈ E} | |||
|} | |} | ||
Line 97: | Line 157: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>01</sub>′ | ||
| | | | ||
| | | | ||
Line 104: | Line 164: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>02</sub>′ | ||
| | | | ||
| | | | ||
Line 111: | Line 171: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>03</sub>′ | ||
| | | | ||
| | | | ||
Line 118: | Line 178: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>04</sub>′ | ||
| | | | ||
| | | | ||
Line 125: | Line 185: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>05</sub>′ | ||
| | | | ||
| | | | ||
Line 132: | Line 192: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>06</sub>′ | ||
| | | | ||
| | | | ||
Line 139: | Line 199: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>07</sub>′ | ||
| | | | ||
| | | | ||
Line 146: | Line 206: | ||
|- valign="top" | |- valign="top" | ||
| —<sub> | | —<sub>08</sub>′ | ||
| | | | ||
| | | | ||
| <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font> | | <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font> | ||
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font> | | <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font> | ||
|- valign="top" | |||
| —<sub>09</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font> | |||
|- valign="top" | |||
| —<sub>10</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font> | |||
|- valign="top" | |||
| —<sub>11</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>12</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x).(μ<sub>B</sub>(x) + ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).(ν<sub>B</sub>(x)<sup>2</sup> + μ<sub>B</sub>(x) + μ<sub>B</sub>(x).ν<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>13</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), sg(1 - μ<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>14</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), sg(ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>15</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>16</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(1 - μ<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>17</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), {{overline|sg}}(ν<sub>B</sub>(x)))</font> | |||
|- valign="top" | |||
| —<sub>18</sub>′ | |||
| | |||
| | |||
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x), sg(μ<sub>B</sub>(x)))</font> | |||
| <font color=red>max(ν<sub>A</sub>(x), min(μ<sub>B</sub>(x), sg(ν<sub>B</sub>(x))))</font> | |||
|} | |} |
Revision as of 20:38, 22 August 2011
List of intuitionistic fuzzy subtractions
sg(x) = { | 1 | if x > 0 |
0 | if x ≤ 0 |
sg(x) = { | 1 | if x < 0 |
0 | if x ≥ 0 |
No. | Ref. | Year | Subtraction |
---|---|---|---|
—01′ | {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E} | ||
—02′ | {<x, min(μA(x), sg(μB(x))), max(νA(x), sg(μB(x)))>|x ∈ E} | ||
—03′ | {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E} | ||
—04′ | {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}
| ||
—05′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - νB(x)))>|x ∈ E} | ||
—06′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(μB(x)))>|x ∈ E} | ||
—07′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), μB(x))>|x ∈ E} | ||
—08′ | {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x))>|x ∈ E} | ||
—09′ | {<x, min(μA(x), sg(μB(x))), max(νA(x), μB(x))>|x ∈ E} | ||
—10′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), 1 - νB(x))>|x ∈ E} | ||
—11′ | {<x, min(μA(x), sg(νB(x))), max(νA(x), sg(νB(x)))>|x ∈ E} | ||
—12′ | {<x, min(μA(x), νB(x).(μB(x) + νB(x))), max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))>|x ∈ E} | ||
—13′ | {<x, min(μA(x), sg(1 - μB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E} | ||
—14′ | {<x, min(μA(x), sg(νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E} | ||
—15′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E} | ||
—16′ | {<x, min(μA(x), sg(μB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E} | ||
—17′ | {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(νB(x)))>|x ∈ E} | ||
—18′ | {<x, min(μA(x), νB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(νB(x))))>|x ∈ E} |
Alternative separated view
No. | Ref. | Year | Subtraction:
{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E} |
---|
No. | Ref. | Year | Subtraction MEMBERSHIP expression |
Subtraction NON-MEMBERSHIP expression |
---|---|---|---|---|
—01′ | min(μA(x), νB(x)) | max(νA(x), μB(x)) | ||
—02′ | min(μA(x), sg(μB(x))) | max(νA(x), sg(μB(x))) | ||
—03′ | min(μA(x), νB(x)) | max(νA(x), μB(x).νB(x) + μB(x)2) | ||
—04′ | min(μA(x), νB(x)) | max(νA(x), 1 - νB(x)) | ||
—05′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), sg(1 - νB(x))) | ||
—06′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), sg(μB(x))) | ||
—07′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), μB(x)) | ||
—08′ | min(μA(x), 1 - μB(x)) | max(νA(x), μB(x)) | ||
—09′ | min(μA(x), sg(μB(x))) | max(νA(x), μB(x)) | ||
—10′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), 1 - νB(x)) | ||
—11′ | min(μA(x), sg(νB(x))) | max(νA(x), sg(νB(x))) | ||
—12′ | min(μA(x), νB(x).(μB(x) + νB(x))) | max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x))) | ||
—13′ | min(μA(x), sg(1 - μB(x))) | max(νA(x), sg(1 - μB(x))) | ||
—14′ | min(μA(x), sg(νB(x))) | max(νA(x), sg(1 - μB(x))) | ||
—15′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), sg(1 - μB(x))) | ||
—16′ | min(μA(x), sg(μB(x))) | max(νA(x), sg(1 - μB(x))) | ||
—17′ | min(μA(x), sg(1 - νB(x))) | max(νA(x), sg(νB(x))) | ||
—18′ | min(μA(x), νB(x), sg(μB(x))) | max(νA(x), min(μB(x), sg(νB(x)))) |
Approaches to defining intuitionistic fuzzy subtractions
References
- Remark on operation "subtraction" over intuitionistic fuzzy sets, Krassimir Atanassov, 2009
- On intuitionistic fuzzy subtraction, generated by an implication from Kleene-Dienes type, Lilija Atanassova, 2009
- On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬11, Beloslav Riečan, Diana Boyadzhieva, Krassimir Atanassov, 2009
- On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬4, Beloslav Riečan, Magdaléna Renčová, Krassimir Atanassov, 2009
- Equalities with intuitionistic fuzzy subtractions and negations, Krassimir Atanassov, Magdaléna Renčová, Dimitar Dimitrov, 2010