As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Subtractions over intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
No edit summary
Line 47: Line 47:
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>5</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), sg(1 - ν<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>6</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), sg(μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>7</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>8</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|}
|}


Line 97: Line 123:
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>5</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), sg(1 - ν<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>6</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), sg(μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>7</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(1 - ν<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>8</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), 1 - μ<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
|}
|}



Revision as of 19:40, 22 August 2011

List of intuitionistic fuzzy subtractions

sg(x) = { 1 if x > 0
0 if x ≤ 0
sg(x) = { 1 if x < 0
0 if x ≥ 0
No. Ref. Year Subtraction
1 {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E}
2 {<x, min(μA(x), sgB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
3 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E}
4 {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}


5 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - νB(x)))>|x ∈ E}
6 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
7 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), μB(x))>|x ∈ E}
8 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x))>|x ∈ E}

Alternative separated view

No. Ref. Year Subtraction:

{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E}

No. Ref. Year Subtraction MEMBERSHIP expression
Subtraction NON-MEMBERSHIP expression
1 min(μA(x), νB(x)) max(νA(x), μB(x))
2 min(μA(x), sgB(x))) max(νA(x), sg(μB(x)))
3 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + μB(x)2)
4 min(μA(x), νB(x)) max(νA(x), 1 - νB(x))
5 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - νB(x)))
6 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(μB(x)))
7 min(μA(x), sg(1 - νB(x))) max(νA(x), μB(x))
8 min(μA(x), 1 - μB(x)) max(νA(x), μB(x))

Approaches to defining intuitionistic fuzzy subtractions

References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.