As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Subtractions over intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
m +1
starting the subtractions
Line 1: Line 1:
== List of intuitionistic fuzzy subtractions ==
{|
|-valign="middle"
| rowspan="2" | sg(x) = <span style="font-size:350%;">{</span>
| 1 || if x > 0
|-
| 0 || if x ≤ 0
|}
{|
|-valign="middle"
| rowspan="2" | {{overline|sg}}(x) = <span style="font-size:350%;">{</span>
| 1 || if x < 0
|-
| 0 || if x ≥ 0
|}
{| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;"
|- valign="top"
! width="5%" | No.
! width="5%" | Ref.
! width="5%" | Year
! width="85%" | Subtraction<br/>
|- valign="top"
| &#8212;<sub>1</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>2</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>, <font color=red>max(ν<sub>A</sub>(x), sg(μ<sub>B</sub>(x)))</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>3</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).ν<sub>B</sub>(x) +  μ<sub>B</sub>(x)<sup>2</sup>)</font>&#62;&#124;x &#8712; E&#125;
|- valign="top"
| &#8212;<sub>4</sub>&#8242;
|
|
| &#123;&#60;x, <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>, <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>&#62;&#124;x &#8712; E&#125;
|}
=== Alternative separated view ===
{| width="100%" class="wikitable" style="font-family:Courier; font-size:120%;"
|- valign="top"
! width="5%" | No.
! width="5%" | Ref.
! width="5%" | Year
! width="85%" | Subtraction:
&#123;&#60;x, <font color=green>Subtraction MEMBERSHIP expression</font>, <font color=red>Subtraction NON-MEMBERSHIP expression</font> &#62;&#124;x &#8712; E&#125;
|}
{| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;"
|- valign="top"
! width="5%" | No.
! width="5%" | Ref.
! width="5%" | Year
! width="40%" | Subtraction MEMBERSHIP expression<br/>
! width="45%" | Subtraction NON-MEMBERSHIP expression<br/>
|- valign="top"
| &#8212;<sub>1</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
|- valign="top"
| &#8212;<sub>2</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), {{overline|sg}}(μ<sub>B</sub>(x)))</font>
| <font color=red>max(ν<sub>A</sub>(x), sg(μ<sub>B</sub>(x)))</font>
|- valign="top"
| &#8212;<sub>3</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x).ν<sub>B</sub>(x) +  μ<sub>B</sub>(x)<sup>2</sup>)</font>
|- valign="top"
| &#8212;<sub>4</sub>&#8242;
|
|
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| <font color=red>max(ν<sub>A</sub>(x), 1 - ν<sub>B</sub>(x))</font>
|}
== References ==
== References ==
* [[Issue:Remark on operation "subtraction" over intuitionistic fuzzy sets|Remark on operation "subtraction" over intuitionistic fuzzy sets]], Krassimir Atanassov, 2009
* [[Issue:Remark on operation "subtraction" over intuitionistic fuzzy sets|Remark on operation "subtraction" over intuitionistic fuzzy sets]], Krassimir Atanassov, 2009

Revision as of 17:29, 22 August 2011

List of intuitionistic fuzzy subtractions

sg(x) = { 1 if x > 0
0 if x ≤ 0
sg(x) = { 1 if x < 0
0 if x ≥ 0
No. Ref. Year Subtraction
1 {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E}
2 {<x, min(μA(x), sgB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
3 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E}
4 {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}

Alternative separated view

No. Ref. Year Subtraction:

{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E}

No. Ref. Year Subtraction MEMBERSHIP expression
Subtraction NON-MEMBERSHIP expression
1 min(μA(x), νB(x)) max(νA(x), μB(x))
2 min(μA(x), sgB(x))) max(νA(x), sg(μB(x)))
3 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + μB(x)2)
4 min(μA(x), νB(x)) max(νA(x), 1 - νB(x))

References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.