From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
|
|
Line 1: |
Line 1: |
| {{lowercase}}
| |
| [[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]] | | [[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]] |
| [[Category:IWIFS conference publications|{{PAGENAME}}]] | | [[Category:IWIFS conference publications|{{PAGENAME}}]] |
Latest revision as of 19:26, 26 November 2009
shortcut
|
http://ifigenia.org/wiki/issue:nifs/12/4/3-8
|
Title of paper:
|
A measure extension theorem
|
Author(s):
|
Beloslav Riečan
|
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica Mathematical Institute of Slovak Acad. of Sciences, Štefánikova 49, SK-81473 Bratislava
|
riecan@fpv.umb.sk , riecan@mat.savba.sk
|
Petra Mazureková
|
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica
|
korcova@fpv.umb.sk
|
|
Presented at:
|
2nd International Workshop on Intuitionistic Fuzzy Sets, 3 December 2006, Banská Bystrica, Slovakia.
|
Published in:
|
Proceedings, published in Notes on Intuitionistic Fuzzy Sets, Volume 12, Number 4, pages 3—8
|
Download:
|
PDF (87 Kb, File info)
|
Abstract:
|
In the paper continuous set functions are considered where the additional condition is substituted by max-min condition: μ(A⋃B) = max(μ(A), μ(B)), μ(A⋂B) = min(μ(A), μ(B)). For such functions the extension theorem is proved from an algebra to the generalized σ-algebra.
|
References:
|
- Krachounov, M.: Intuitionistic probability and intuitionistic fuzzy sets. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engeneering (E. El-Darzi. R. Atanassov, P. Chountas eds.) Univ. of Westminister, London 2006, 18-24.
- Pap, E.: Pseudoadditive measures and their applications. In: Handbook of Measure Theory (E. Pap ed.). Elsevier, Amsterdam 2002, 1403 - 1465.
- Riečanová, Z.: About δ-additive and δ-maxitive measures. Math. Slovaca 32, 1982, 413 -436.
- Shilkret, N.: Maxitive measure and integration. Indag.Math. 33 (1971), 109 - 116.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|