As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:A theorem for constructing interval-valued intuitionistic fuzzy sets from intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: {{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title...
 
mNo edit summary
Line 17: Line 17:
  | institution    = Departmento de Matematica en Informatica, Universidad Publica de Navarra
  | institution    = Departmento de Matematica en Informatica, Universidad Publica de Navarra
  | address        = 31006, Campus Arrosadia, Pamplona, Spain
  | address        = 31006, Campus Arrosadia, Pamplona, Spain
| email-before-at = bustince
}}
}}
{{issue/data
{{issue/data

Revision as of 17:34, 13 August 2009

shortcut
http://ifigenia.org/wiki/issue:nifs/1/1/05-16
Title of paper: A theorem for constructing interval-valued intuitionistic fuzzy sets from intuitionistic fuzzy sets
Author(s):
Humberto Bustince
Departmento de Matematica en Informatica, Universidad Publica de Navarra, 31006, Campus Arrosadia, Pamplona, Spain
bustince@si.upna.es
Pedro Burillo
Departmento de Matematica en Informatica, Universidad Publica de Navarra, 31006, Campus Arrosadia, Pamplona, Spain
Published in: "Notes on IFS", Volume 1 (1995) Number 1, pages 5—16
Download:  PDF (505  Kb, File info)
Abstract: In this paper we present a theorem that allows us to construct interval-valued intuitionistic fuzzy sets from intuitionistic fuzzy sets. We also study the way of recovering of intuitionistic fuzzy sets used in the construction of interval-valued intuitionistic fuzzy set from different operators. We analyse the numerical measures of information of the interval-valued intuitionistic fuzzy set constructed in function with the numerical measures of information of the intuitionistic fuzzy sets used in its construction. We review the most important properties of intuitionistic fuzzy sets and of interval-valued intuitionistic fuzzy sets and we analyse three operators among these sets with their properties.
Keywords: Fuzzy set, Intuitionistic fuzzy set, Interval-valued intuitionistic fuzzy set, Intuitionistic entropy, Interval-valued intuitionistic entropy, Operators on interval-valued intuitionistic entropy
References:
  1. K. Atanassov, Intuitionistic fuzzy sets, VII ITKR Session, Deposed in Central Sci.- Techn. Library of Bulg. Acad. of Sci., Sofia June (1983), 1697-84
  2. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96
  3. K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33 (1989), 37-45
  4. K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349
  5. P. Burillo and H. Bustince, Isoentropic methods for construction of IVFS. CIFT'94: 57-61, Trento, Italy, (1994), 1-3
  6. P. Burillo and H. Bustince, Estructuras Algebraicas en Conjunctos Intuicionisticas Fuzzy, II Congreso Espanol Sbre Tecnologias y Logica Fuzzy, Boadilla del Monte, Madrid, (1992), 135-146
  7. P. Burillo and H. Bustince, Informational Energy on Intuitionistic Fuzzy Sets and on Interval-valued Fuzzy Sets. Relationship between Measures of Information, FUBEST'94, 46-50, Sofia, Bulgaria, Sept. (1994), 28-30
  8. P. Burillo and H. Bustince, Two operators on interval-valued intuitionistic fuzzy sets. Part 1, Comptes Rendus de'l Academie Bulgare des Sciences, vol. 47, no. 12, 1994
  9. H. Bustince, Conjunctos Intuicionisticas c Intervalo valorados Difusos: Propiedades y Construccion. Relaciones Intuicionisticas Fuzzy. Thesis Universidad Publica de Navarra, (1994).
  10. H. Bustince, Numerical information measurements in interval-valued fuzzy sets. FUBEST'94. 50-53 Sofia, Bulgaria, Sept. (1994), 28-30.
  11. D. Dubois and H. Prade, A Class of Fuzzy Measures Based on Triangular Norms. Int. J. General Systems, 8: 43-61 (1982)
  12. A. Kaufmann, Introduction a la Theorie des Sous-Ensembles Flous. Vol I, II, III y IV, Masson, 1977
  13. E. P. Klement, Operations on Fuzzy Sets and Fuzzy Numbers Related to Triangular Norms
  14. K. Menger, Statistical Metrics, Proc. N.A.S., Vol. 28, 1942
  15. R. Sambuc, Functions Φ-Floues. Application a l'aide au Diagnostic en Pathologie Thyroidenne. These de Doctorat en Medecine, Marseille, 1975.
  16. L. A. Zadeh., Fuzzy Sets, Inform. and Control, 8 (1965), 338-353
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.