As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Modifications of Łukasiewicz's intuitionistic fuzzy implication: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}..."
 
mNo edit summary
Line 43: Line 43:
# Atanassov, K. (2006). On some intuitionistic fuzzy implications. Comptes Rendus de l’Academie bulgare des Sciences, 59(1), 19–24.
# Atanassov, K. (2006). On some intuitionistic fuzzy implications. Comptes Rendus de l’Academie bulgare des Sciences, 59(1), 19–24.
# Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham, 2017.
# Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham, 2017.
# Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
# Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). [[Issue:On intuitionistic fuzzy pairs|On intuitionistic fuzzy pairs]]. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
# Dworniczak, P., Atanassova, L., & Angelova, N. Modal type of weak intuitionistic fuzzy implications generated by the operation △. Cybernetics and Information Technologies (submitted)
# Dworniczak, P., Atanassova, L., & Angelova, N. Modal type of weak intuitionistic fuzzy implications generated by the operation △. Cybernetics and Information Technologies (submitted)
# Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.
# Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.

Revision as of 11:56, 26 October 2021

shortcut
http://ifigenia.org/wiki/issue:nifs/27/3/32-39
Title of paper: Modifications of Łukasiewicz’s intuitionistic fuzzy implication
Author(s):
Alžbeta Michálková
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, Slovakia
Mathematical Institute, Slovak Academy of Sciences, Ďumbierska 1, Banská Bystrica, Slovakia
alzbeta.michalikova@umb.sk
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01 – 447 Warsaw, Poland
Warsaw School of Information Technology, ul. Newelska 6, 01 – 447 Warsaw, Poland
szmidt@ibspan.waw.pl
Peter Vassilev
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
peter.vassilev@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 3, pages 32–39
DOI: https://doi.org/10.7546/nifs.2021.27.3.32-39
Download:  PDF (167  Kb, File info)
Abstract: In [6], G. Klir and B. Yuan named after J. Łukasiewicz the implication [math]\displaystyle{ p \rightarrow q = min(1, p+q) }[/math]. In a series of papers, 198 different intuitionistic fuzzy implications have been introduced, and their basic properties have been studied. Here we introduce six new implications which are modifications of Łukasiewicz’s intuitionistic fuzzy implication, and we describe and prove some of their properties.
Keywords: Intuitionistic fuzzy implication, Intuitionistic fuzzy set, Łukasiewicz’s fuzzy implication.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (2006). On some intuitionistic fuzzy implications. Comptes Rendus de l’Academie bulgare des Sciences, 59(1), 19–24.
  2. Atanassov, K. (2017). Intuitionistic Fuzzy Logics, Springer, Cham, 2017.
  3. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  4. Dworniczak, P., Atanassova, L., & Angelova, N. Modal type of weak intuitionistic fuzzy implications generated by the operation △. Cybernetics and Information Technologies (submitted)
  5. Feys, R. (1965). Modal Logics. Gauthier-Villars, Paris.
  6. Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
  7. Mendelson, E. (1964). Introduction to Mathematical Logic, Princeton, NJ: D. Van Nostrand; Fourt Ed. 2001.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.