Title of paper:
|
Representation of complex grades of membership and non-membership for a complex intuitionistic fuzzy sets
|
Author(s):
|
A. El Allaoui
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
|
Said Melliani
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
said.melliani@gmail.com
|
Lalla Saadia Chadli
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 5, pages 51—60
|
Download:
|
PDF (178 Kb Kb, File info)
|
Abstract:
|
In this paper, we propose the notion of comlex intuitionistic fuzzy sets defined by complex-valued membership and non-membership functions in order to make extension the result presented in [5]. We first give cartesian representation then we discuss the polar representation.
|
Keywords:
|
Complex intuitionistic fuzzy sets, Cartesian representation, Polar representation.
|
AMS Classification:
|
03F55.
|
References:
|
- Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica- Verlag, Heidelberg.
- Atanassov, K. T., Vassilev, P. M., & Tsvetkov, R. T. (2013) Intuitionistic Fuzzy Sets, Measures and Integrals, Bulgarian Academic Monographs, Vol. 12, Professor Marin Drinov Academic Publishing House, Sofia.
- Elomari, M., Melliani, S., Ettoussi R., & Chadli, L. S. (2015) Intuitionistic fuzzy semigroup, Notes on Intuitionistic Fuzzy Sets, 21(2), 43–50.
- Karpenko, D., Van Gorder, R. A., & Kandel, A. (2014) The Cauchy problem for complex fuzzy differential equations, Fuzzy Sets and Systems, 245, 18–29.
- Melliani, S., Elomari, M., Ettoussi, R., & Chadli, L. S. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
- Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002) Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10, 171–186.
- Tamir, D. E., Jin, L., & Kandel, A. (2011) A new interpretation of complex membership grade, Int. J. Intell. Syst., 26, 285–312.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|