As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Subtractions over intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
; "What Links Here" References {{Special:WhatLinksHere/{{PAGENAME}}|namespace=102|hidetrans=1|hideredirs=1}}
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== List of intuitionistic fuzzy subtractions of &#8212;<sub><i>i</i></sub>&#8242; type ==
For the various definitions of subtraction of over [[intuitionistic fuzzy sets]], the functions sg and {{overline|sg}} have been used:
 
<math>
\text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x > 0 \\
0 & \text{if } x \leq 0
\end{array},</math>&nbsp;&nbsp;&nbsp;<math>
\overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x < 0 \\
0 & \text{if } x \geq 0
\end{array}.</math>
 
== List of intuitionistic fuzzy subtractions of &#8212;<sub><i>i</i></sub> type ==  


{|
=== Alternative separated view ===  
|-valign="middle"
| rowspan="2" | sg(x) = <span style="font-size:350%;">{</span>
| 1 || if x > 0
|-
| 0 || if x ≤ 0
|}


{|
== List of intuitionistic fuzzy subtractions of &#8212;<sub><i>i</i></sub>&#8242; type ==
|-valign="middle"
| rowspan="2" | {{overline|sg}}(x) = <span style="font-size:350%;">{</span>
| 1 || if x < 0
|-
| 0 || if x ≥ 0
|}


{| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;"  
{| width="100%" class="wikitable sortable" style="font-family:Courier; font-size:120%;"  
Line 255: Line 253:
|  
|  
|  
|  
| <font color=green>min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))</font>
| style= "color: green;" | min(μ<sub>A</sub>(x), ν<sub>B</sub>(x))
| <font color=red>max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))</font>
| style= "color: red;"  | max(ν<sub>A</sub>(x), μ<sub>B</sub>(x))


|- valign="top"
|- valign="top"
Line 490: Line 488:


|}
|}
== List of intuitionistic fuzzy subtractions of &#8212;<sub><i>i</i></sub>&#8242;&#8242; type ==
=== Alternative separated view ===


== Approaches to defining intuitionistic fuzzy subtractions ==
== Approaches to defining intuitionistic fuzzy subtractions ==
Line 499: Line 502:
* [[Issue:On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬4|On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬<sub>4</sub>]], Beloslav Riečan, Magdaléna Renčová, Krassimir Atanassov, 2009
* [[Issue:On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬4|On intuitionistic fuzzy subtraction, related to intuitionistic fuzzy negation ¬<sub>4</sub>]], Beloslav Riečan, Magdaléna Renčová, Krassimir Atanassov, 2009
* [[Issue:Equalities with intuitionistic fuzzy subtractions and negations|Equalities with intuitionistic fuzzy subtractions and negations]], Krassimir Atanassov, Magdaléna Renčová, Dimitar Dimitrov, 2010
* [[Issue:Equalities with intuitionistic fuzzy subtractions and negations|Equalities with intuitionistic fuzzy subtractions and negations]], Krassimir Atanassov, Magdaléna Renčová, Dimitar Dimitrov, 2010
* [[Issue:On Łukasiewicz's intuitionistic fuzzy subtraction|On Łukasiewicz's intuitionistic fuzzy subtraction]], Beloslav Riečan, Krassimir Atanassov, 2011
* [[Issue:On Zadeh's intuitionistic fuzzy subtraction|On Zadeh's intuitionistic fuzzy subtraction]], Beloslav Riečan, Krassimir Atanassov, 2011
; "What Links Here" References
{{Special:WhatLinksHere/{{PAGENAME}}|namespace=102|hidetrans=1|hideredirs=1}}


== See also ==
== See also ==

Latest revision as of 09:41, 29 April 2022

For the various definitions of subtraction of over intuitionistic fuzzy sets, the functions sg and sg have been used:

[math]\displaystyle{ \text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \gt 0 \\ 0 & \text{if } x \leq 0 \end{array}, }[/math]   [math]\displaystyle{ \overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \lt 0 \\ 0 & \text{if } x \geq 0 \end{array}. }[/math]

List of intuitionistic fuzzy subtractions of —i type

Alternative separated view

List of intuitionistic fuzzy subtractions of —i′ type

No. Ref. Year Subtraction
01 {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E}
02 {<x, min(μA(x), sgB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
03 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E}
04 {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}
05 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - νB(x)))>|x ∈ E}
06 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
07 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), μB(x))>|x ∈ E}
08 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x))>|x ∈ E}
09 {<x, min(μA(x), sgB(x))), max(νA(x), μB(x))>|x ∈ E}
10 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), 1 - νB(x))>|x ∈ E}
11 {<x, min(μA(x), sg(νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
12 {<x, min(μA(x), νB(x).(μB(x) + νB(x))), max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))>|x ∈ E}
13 {<x, min(μA(x), sg(1 - μB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
14 {<x, min(μA(x), sg(νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
15 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
16 {<x, min(μA(x), sgB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
17 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
18 {<x, min(μA(x), νB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(νB(x))))>|x ∈ E}
19 {<x, min(μA(x), νB(x), sg(μB(x))), νA(x)>|x ∈ E}
20 {<x, min(μA(x), νB(x)), νA(x)>|x ∈ E}
21 {<x, min(μA(x), 1 - μB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(1 - μB(x))))>|x ∈ E}
22 {<x, min(μA(x), 1 - μB(x), sg(μB(x))), νA(x)>|x ∈ E}
23 {<x, min(μA(x), 1 - μB(x)), νA(x)>|x ∈ E}
24 {<x, min(μA(x), νB(x), sg(1 - νB(x))), max(νA(x), min(1 - νB(x), sg(νB(x))))>|x ∈ E}
25 {<x, min(μA(x), νB(x), sg(1 - νB(x))), νA(x)>|x ∈ E}
26 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + sg(1 - μB(x)))>|x ∈ E}
27 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x).(1 - μB(x)) + sg(1 - μB(x)))>|x ∈ E}
28 {<x, min(μA(x), νB(x)), max(νA(x), (1 - νB(x)).νB(x) + sgB(x)))>|x ∈ E}
29 {<x, min(μA(x), max(0, μB(x).νB(x) + sg(1 - νB(x)))), max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))>|x ∈ E}
30 {<x, min(μA(x), μB(x).νB(x), max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))>|x ∈ E}
31 {<x, min(μA(x), (1 - μB(x)).μB(x) + sgB(x))), max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))>|x ∈ E}
32 {<x, min(μA(x), (1 - μB(x)).μB(x), max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))>|x ∈ E}
33 {<x, min(μA(x), νB(x).(1 - νB(x)) + sg(1 - νB(x))), max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))>|x ∈ E}
34 {<x, min(μA(x), νB(x).(1 - νB(x))), max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))>|x ∈ E}

Alternative separated view

No. Ref. Year Subtraction:

{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E}

No. Ref. Year Subtraction MEMBERSHIP expression
Subtraction NON-MEMBERSHIP expression
01 min(μA(x), νB(x)) max(νA(x), μB(x))
02 min(μA(x), sgB(x))) max(νA(x), sg(μB(x)))
03 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + μB(x)2)
04 min(μA(x), νB(x)) max(νA(x), 1 - νB(x))
05 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - νB(x)))
06 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(μB(x)))
07 min(μA(x), sg(1 - νB(x))) max(νA(x), μB(x))
08 min(μA(x), 1 - μB(x)) max(νA(x), μB(x))
09 min(μA(x), sgB(x))) max(νA(x), μB(x))
10 min(μA(x), sg(1 - νB(x))) max(νA(x), 1 - νB(x))
11 min(μA(x), sg(νB(x))) max(νA(x), sgB(x)))
12 min(μA(x), νB(x).(μB(x) + νB(x))) max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))
13 min(μA(x), sg(1 - μB(x))) max(νA(x), sg(1 - μB(x)))
14 min(μA(x), sg(νB(x))) max(νA(x), sg(1 - μB(x)))
15 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - μB(x)))
16 min(μA(x), sgB(x))) max(νA(x), sg(1 - μB(x)))
17 min(μA(x), sg(1 - νB(x))) max(νA(x), sgB(x)))
18 min(μA(x), νB(x), sg(μB(x))) max(νA(x), min(μB(x), sg(νB(x))))
19 min(μA(x), νB(x), sg(μB(x))) νA(x)
20 min(μA(x), νB(x)) νA(x)
21 min(μA(x), 1 - μB(x), sg(μB(x))) max(νA(x), min(μB(x), sg(1 - μB(x))))
22 min(μA(x), 1 - μB(x), sg(μB(x))) νA(x)
23 min(μA(x), 1 - μB(x)) νA(x)
24 min(μA(x), νB(x), sg(1 - νB(x))) max(νA(x), min(1 - νB(x), sg(νB(x))))
25 min(μA(x), νB(x), sg(1 - νB(x))) νA(x)
26 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + sg(1 - μB(x)))
27 min(μA(x), 1 - μB(x)) max(νA(x), μB(x).(1 - μB(x)) + sg(1 - μB(x)))
28 min(μA(x), νB(x)) max(νA(x), (1 - νB(x)).νB(x) + sgB(x)))
29 min(μA(x), max(0, μB(x).νB(x) + sg(1 - νB(x)))) max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))
30 min(μA(x), μB(x).νB(x) max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))
31 min(μA(x), (1 - μB(x)).μB(x) + sgB(x))) max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))
32 min(μA(x), (1 - μB(x)).μB(x) max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))
33 min(μA(x), νB(x).(1 - νB(x)) + sg(1 - νB(x))) max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))
34 min(μA(x), νB(x).(1 - νB(x))) max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))


List of intuitionistic fuzzy subtractions of —i′′ type

Alternative separated view

Approaches to defining intuitionistic fuzzy subtractions

References

"What Links Here" References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.