As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy Prolog: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
mNo edit summary
m see also
 
Line 1: Line 1:
[[Category:Publications on intuitionistic fuzzy sets]]
[[Category:Publications on intuitionistic fuzzy logic|{{PAGENAME}}]]
[[Category:Publications in Fuzzy Sets and Systems]]
[[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]]
[[Category:Publications in 1993 year]]
[[Category:Publications in Fuzzy Sets and Systems|{{PAGENAME}}]]
[[Category:Publications in 1993 year|{{PAGENAME}}]]
{{issue/title
{{issue/title
  | title          = Intuitionistic fuzzy Prolog
  | title          = Intuitionistic fuzzy Prolog
Line 48: Line 49:
  | citations      =  
  | citations      =  
  | see-also        =  
  | see-also        =  
* [[Issue:An attempt to build an intuitionistic fuzzy Prolog machine|An attempt to build an intuitionistic fuzzy Prolog machine]]
}}
}}

Latest revision as of 14:59, 11 September 2009

shortcut
http://ifigenia.org/wiki/issue:fss-53-121-128
Title of paper: Intuitionistic fuzzy Prolog
Author(s):
Krassimir Atanassov
Institute for Microsystems, Sofia, Bulgaria
   (current: krat@bas.bg)
Christo Georgiev
Department of Computer Science, Higher Institute of Mechanical and Electrical Engineering, Varna, Bulgaria
Published in: Fuzzy Sets and Systems, 53 (1993) pp 121-128
Download:  PDF (444  Kb, File info)
Abstract: A logic programming system which uses a theory of intuitionistic fuzzy sets to model various forms of uncertainty is presented. To represent uncertainty of facts and rules, a pair of two different real numbers (degree of truth and degree of falsity) are associated. The problem of propagating uncertainty through logical inference and various models of interpretation are considered. The framework discussed allows knowledge representation and inference under uncerta inty in the form of rules suitable for expert systems.
Keywords: Expert systems, Intuitionistic fuzzy logic, Intuitionistic fuzzy sets, Logic programming.
References:
  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
  2. K. Atanassov, Two variants of intuitionistic fuzzy propositional calculus, Preprint IM-MFAIS-5-88, Sofia (1988).
  3. K. Atanassov, Two variants of intuitionistic fuzzy modal logic, Preprint IM-MFAIS-3-89, Sofia, (1989).
  4. K. Atanassov and G. Gargov, Intuitionistic fuzzy logic, C.R. Acad. Bulgare. Sci. 43(3) (1990) 9-12.
  5. K. Atanassov, Two operators on intuitionistic fuzzy sets, C.R. Acad. Bulgare Sci. 41(5) (1988) 35-38.
  6. K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989) 1-9.
  7. K. Atanassov, Four new operators on intuitionistic fuzzy sets, Preprint IM-MFAIS-4-89, Sofia (1989).
  8. J.F. Baldwin, Support logic programming, in: A. Jones et al., Eds., Fuzzy Sets Theory and Applications (Reidel, Dordrecht-Boston, 1986) 133-170.
  9. D. Dubois and H. Prade, On the combination of evidence in various mathematical frameworks, Rapport L.S.I. No. 312 (Dec. 1988).
  10. D. Dubois and H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, Comput. Intell. 4 (1988) 244-264.
  11. G. Gargov and K. Atanassov, Two results in intuitionistic fuzzy logic, C.R. Acad. Bulgare Sci. (submitted).
  12. M.A.S. Guth, Some uses and limitations of fuzzy logic in artificial intelligence reasoning for reactor control, Nuclear Eng. and Design 113 (1989) 990-109.
  13. C. Hinde, Fuzzy Prolog, lnternat. J. Man-Machine Systems 24 (1986) 569-595.
  14. T. Martin, J. Baldwin and B. Polsworth, FRROLOG - A fuzzy Prolog interpreter, ITRC Res. Report 50, Univ. of Bristol (1984).
  15. T. Martin, J. Baldwin and B. Polsworth, The implementation of FRROLOG - A fuzzy Prolog interpreter, Fuzzy Sets and Systems 23 (1987) 119-129.
  16. Y. Sakakibara, Programming in modal logic: an extension of Prolog based on modal logic, Lecture Notes in Computer Science No. 264 (1987) 81-91.
  17. H.-J. Zimmermann, and P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems 4 (1980) 37-51.
  18. H.-J. Zimmermann and P. Zysno, Decisions and evaluations by hierarchical aggregation of information, Fuzzy Sets and Systems 10 (1983) 243-260.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.

See also