As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Necessity and possibility: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:IFS-necessity-possibility.gif|right|thumb|250px|[[Geometrical interpretations of intuitionistic fuzzy sets|Geometrical interpretation]] of necessity and possibility ]]
[[Image:IFS-necessity-possibility.gif|right|thumb|250px|The most common [[Geometrical interpretations of intuitionistic fuzzy sets|geometrical interpretation]] of necessity and possibility with a point]]
'''Necessity and possibility''' in the context of [[intuitionistic fuzzy sets]] are two modal [[Operators over intuitionistic fuzzy sets|operators]] defined as follows:
'''Necessity and possibility''' in the context of [[intuitionistic fuzzy sets]] are two modal [[Operators over intuitionistic fuzzy sets|operators]] defined as follows:


Let <math>E</math> be a fixed universe and <math>A \subset E</math> be a given set. Let functions <math>\mu_A, \nu_A \ : \ E \ \rightarrow [0,1]</math> determine the degrees of [[membership]] and [[non-membership]]. Then,
Let <math>E</math> be a fixed universe and <math>A \subset E</math> be a given set. Let functions <math>\mu_A, \nu_A \ : \ E \ \rightarrow [0,1]</math> determine the degrees of [[membership]] and [[non-membership]]. Then, the sets


<div align="center">
<div align="center">
Line 10: Line 10:
</div>
</div>


are called, respectively, necessity and possibility.
are called, respectively, necessity and possibility operators.


When <math>A</math> is a proper IFS, i.e. there exists an element <math>x \in E</math> for which <math>\mu_A(x) > 0</math>, then
When <math>A</math> is a proper IFS, i.e. there exists an element <math>x \in E</math> for which <math>\mu_A(x) > 0</math>, then
Line 25: Line 25:
<math> \Box A = A = \Diamond A </math>.
<math> \Box A = A = \Diamond A </math>.
</div>
</div>
These operators are meaningless in the case of fuzzy sets, hence, this is a demonstration that intuitionistic fuzzy sets are proper extensions of  the ordinary fuzzy sets. Both operators were defined in May 1983 by [[Krassimir Atanassov]].


== Propositions about necessity and possibility ==
== Propositions about necessity and possibility ==
[[Image:IFS-necessity-possibility-with-segments.gif|right|thumb|250px|A possible, though rarely used, geometrical interpretation of necessity and possibility with segments]]
[[Image:IFS-necessity-possibility-equilateral-triangle.gif|right|thumb|250px|Another possible geometrical interpretation, within the equilateral triangle]]
For every intuitionistic fuzzy set the following statements are valid:<ref>Proposition 1.42, page 61 from [[Intuitionistic Fuzzy Sets: Theory and Applications]], [[Krassimir Atanassov]], Springer, 1999.</ref>
For every intuitionistic fuzzy set the following statements are valid:<ref>Proposition 1.42, page 61 from [[Intuitionistic Fuzzy Sets: Theory and Applications]], [[Krassimir Atanassov]], Springer, 1999.</ref>


Line 62: Line 67:
\overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\
\overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\
\overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\
\overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\
\end{array}
</math></div>
''Proof of the first statement:''
<div align="center"><math>
\begin{array}{r l}  & \\
  & \Box (A \cap B) \ =  \\
= & \Box \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), 1 - \min(\mu_A(x), \mu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(1 - \mu_A(x), 1 - \mu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \ | \ x \in E \rbrace \cap \lbrace \langle x, \mu_B(x), 1 - \mu_B(x) \rangle \ | \ x \in E \rbrace \\
= & \Box A \cap \Box B
\end{array}
\end{array}
</math></div>
</math></div>

Latest revision as of 18:14, 11 May 2017

The most common geometrical interpretation of necessity and possibility with a point

Necessity and possibility in the context of intuitionistic fuzzy sets are two modal operators defined as follows:

Let [math]\displaystyle{ E }[/math] be a fixed universe and [math]\displaystyle{ A \subset E }[/math] be a given set. Let functions [math]\displaystyle{ \mu_A, \nu_A \ : \ E \ \rightarrow [0,1] }[/math] determine the degrees of membership and non-membership. Then, the sets

[math]\displaystyle{ \Box A = \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

[math]\displaystyle{ \Diamond A = \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

are called, respectively, necessity and possibility operators.

When [math]\displaystyle{ A }[/math] is a proper IFS, i.e. there exists an element [math]\displaystyle{ x \in E }[/math] for which [math]\displaystyle{ \mu_A(x) \gt 0 }[/math], then

[math]\displaystyle{ \Box A \subset A \subset \Diamond A }[/math]

[math]\displaystyle{ \Box A \ne A \ne \Diamond A }[/math].

Obviously, for every fuzzy set, i.e. intuitionistic fuzzy set with [math]\displaystyle{ (\forall x \in E)(\pi_A(x) = 0) }[/math] it holds that

[math]\displaystyle{ \Box A = A = \Diamond A }[/math].

These operators are meaningless in the case of fuzzy sets, hence, this is a demonstration that intuitionistic fuzzy sets are proper extensions of the ordinary fuzzy sets. Both operators were defined in May 1983 by Krassimir Atanassov.

Propositions about necessity and possibility

A possible, though rarely used, geometrical interpretation of necessity and possibility with segments
Another possible geometrical interpretation, within the equilateral triangle

For every intuitionistic fuzzy set the following statements are valid:[1]

[math]\displaystyle{ \begin{array}{r c l} & \\ \overline{\Box \overline{A}} & = & \Diamond A \\ \overline{\Diamond \overline{A}} & = & \Box A \\ \Box \Box A & = & \Box A \\ \Box \Diamond A & = & \Diamond A \\ \Diamond \Box A & = & \Box A \\ \Diamond \Diamond A & = & \Diamond A \end{array} }[/math]

Proof of the first statement:

[math]\displaystyle{ \begin{array}{r l} & \\ \overline{\Box \overline{A}} \ = & \overline{\Box \lbrace \langle x, \nu_A(x), \mu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \overline{\lbrace \langle x, \nu_A(x), 1 - \nu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace \\ = & \Diamond A \end{array} }[/math]

The following statements are also valid:[2]

[math]\displaystyle{ \begin{array}{r c l} & \\ \Box (A \cap B) & = & \Box A \cap \Box B \\ \Box (A \cup B) & = & \Box A \cup \Box B \\ \overline{\Box (\overline{A} + \overline{B})} & = & \Diamond A . \Diamond B \\ \overline{\Box (\overline{A} . \overline{B})} & = & \Diamond A + \Diamond B \\ \Diamond (A \cap B) & = & \Diamond A \cap \Diamond B \\ \Diamond (A \cup B) & = & \Diamond A \cup \Diamond B \\ \overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\ \overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\ \end{array} }[/math]

Proof of the first statement:

[math]\displaystyle{ \begin{array}{r l} & \\ & \Box (A \cap B) \ = \\ = & \Box \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), 1 - \min(\mu_A(x), \mu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(1 - \mu_A(x), 1 - \mu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \ | \ x \in E \rbrace \cap \lbrace \langle x, \mu_B(x), 1 - \mu_B(x) \rangle \ | \ x \in E \rbrace \\ = & \Box A \cap \Box B \end{array} }[/math]

References

  1. Proposition 1.42, page 61 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.
  2. Theorem 1.43, page 62 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.