As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Necessity and possibility: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: '''Necessity and possibility''' in the context of intuitionistic fuzzy sets are two modal operators defined as follows: Let <math>E</math>...
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:IFS-necessity-possibility.gif|right|thumb|250px|The most common [[Geometrical interpretations of intuitionistic fuzzy sets|geometrical interpretation]] of necessity and possibility with a point]]
'''Necessity and possibility''' in the context of [[intuitionistic fuzzy sets]] are two modal [[Operators over intuitionistic fuzzy sets|operators]] defined as follows:
'''Necessity and possibility''' in the context of [[intuitionistic fuzzy sets]] are two modal [[Operators over intuitionistic fuzzy sets|operators]] defined as follows:


Let <math>E</math> be a fixed universe and <math>A \subset E</math> be a given set. Let functions <math>\mu_A, \nu_A \ : \ E \ \rightarrow [0,1]</math> determine the degrees of [[membership]] and [[non-membership]]. Then,
Let <math>E</math> be a fixed universe and <math>A \subset E</math> be a given set. Let functions <math>\mu_A, \nu_A \ : \ E \ \rightarrow [0,1]</math> determine the degrees of [[membership]] and [[non-membership]]. Then, the sets


<div align="center">
<div align="center">
Line 9: Line 10:
</div>
</div>


are called, respectively, necessity and possibility.
are called, respectively, necessity and possibility operators.


When <math>A</math> is a proper IFS, i.e. there exists an element <math>x \in E</math> for which <math>\mu_A(x) > 0</math>, then
When <math>A</math> is a proper IFS, i.e. there exists an element <math>x \in E</math> for which <math>\mu_A(x) > 0</math>, then
Line 19: Line 20:
</div>
</div>


On the other hand, for every [[fuzzy set]], i.e. intuitionistic fuzzy set with <math>(\forall x \in E)(\pi_A(x) = 0)</math> it holds that
Obviously, for every [[fuzzy set]], i.e. intuitionistic fuzzy set with <math>(\forall x \in E)(\pi_A(x) = 0)</math> it holds that


<div align="center">
<div align="center">
Line 25: Line 26:
</div>
</div>


[[Category:intuitionistic fuzzy sets]]
These operators are meaningless in the case of fuzzy sets, hence, this is a demonstration that intuitionistic fuzzy sets are proper extensions of  the ordinary fuzzy sets. Both operators were defined in May 1983 by [[Krassimir Atanassov]].
 
== Propositions about necessity and possibility ==
[[Image:IFS-necessity-possibility-with-segments.gif|right|thumb|250px|A possible, though rarely used, geometrical interpretation of necessity and possibility with segments]]
[[Image:IFS-necessity-possibility-equilateral-triangle.gif|right|thumb|250px|Another possible geometrical interpretation, within the equilateral triangle]]
 
For every intuitionistic fuzzy set the following statements are valid:<ref>Proposition 1.42, page 61 from [[Intuitionistic Fuzzy Sets: Theory and Applications]], [[Krassimir Atanassov]], Springer, 1999.</ref>
 
<div align="center"><math>
\begin{array}{r c l}  & \\
\overline{\Box \overline{A}} & = & \Diamond A \\
\overline{\Diamond \overline{A}} & = & \Box A \\
\Box \Box A & = & \Box A \\
\Box \Diamond A & = & \Diamond A \\
\Diamond \Box A & = & \Box A \\
\Diamond \Diamond A & = & \Diamond A
\end{array}
</math></div>
 
''Proof of the first statement:''
 
<div align="center"><math>
\begin{array}{r l}  & \\
\overline{\Box \overline{A}} \ = & \overline{\Box \lbrace \langle x, \nu_A(x), \mu_A(x) \rbrace \ | \ x \in E \rbrace} \\
= & \overline{\lbrace \langle x, \nu_A(x), 1 - \nu_A(x) \rbrace \ | \ x \in E \rbrace} \\
= & \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace \\
= & \Diamond A
\end{array}
</math></div>
 
The following statements are also valid:<ref>Theorem 1.43, page 62 from [[Intuitionistic Fuzzy Sets: Theory and Applications]], [[Krassimir Atanassov]], Springer, 1999.</ref>
<div align="center"><math>
\begin{array}{r c l}  & \\
\Box (A \cap B) & = & \Box A \cap \Box B \\
\Box (A \cup B) & = & \Box A \cup \Box B \\
\overline{\Box (\overline{A} + \overline{B})} & = & \Diamond A . \Diamond B \\
\overline{\Box (\overline{A} . \overline{B})} & = & \Diamond A + \Diamond B \\
\Diamond (A \cap B) & = & \Diamond A \cap \Diamond B \\
\Diamond (A \cup B) & = & \Diamond A \cup \Diamond B \\
\overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\
\overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\
\end{array}
</math></div>
 
''Proof of the first statement:''
 
<div align="center"><math>
\begin{array}{r l}  & \\
  & \Box (A \cap B) \ =  \\
= & \Box \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), 1 - \min(\mu_A(x), \mu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(1 - \mu_A(x), 1 - \mu_B(x)) \rangle \ | \ x \in E \rbrace \\
= & \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \ | \ x \in E \rbrace \cap \lbrace \langle x, \mu_B(x), 1 - \mu_B(x) \rangle \ | \ x \in E \rbrace \\
= & \Box A \cap \Box B
\end{array}
</math></div>
 
== References ==
<references />
 
[[Category:Intuitionistic fuzzy sets]]

Latest revision as of 18:14, 11 May 2017

The most common geometrical interpretation of necessity and possibility with a point

Necessity and possibility in the context of intuitionistic fuzzy sets are two modal operators defined as follows:

Let [math]\displaystyle{ E }[/math] be a fixed universe and [math]\displaystyle{ A \subset E }[/math] be a given set. Let functions [math]\displaystyle{ \mu_A, \nu_A \ : \ E \ \rightarrow [0,1] }[/math] determine the degrees of membership and non-membership. Then, the sets

[math]\displaystyle{ \Box A = \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

[math]\displaystyle{ \Diamond A = \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

are called, respectively, necessity and possibility operators.

When [math]\displaystyle{ A }[/math] is a proper IFS, i.e. there exists an element [math]\displaystyle{ x \in E }[/math] for which [math]\displaystyle{ \mu_A(x) \gt 0 }[/math], then

[math]\displaystyle{ \Box A \subset A \subset \Diamond A }[/math]

[math]\displaystyle{ \Box A \ne A \ne \Diamond A }[/math].

Obviously, for every fuzzy set, i.e. intuitionistic fuzzy set with [math]\displaystyle{ (\forall x \in E)(\pi_A(x) = 0) }[/math] it holds that

[math]\displaystyle{ \Box A = A = \Diamond A }[/math].

These operators are meaningless in the case of fuzzy sets, hence, this is a demonstration that intuitionistic fuzzy sets are proper extensions of the ordinary fuzzy sets. Both operators were defined in May 1983 by Krassimir Atanassov.

Propositions about necessity and possibility

A possible, though rarely used, geometrical interpretation of necessity and possibility with segments
Another possible geometrical interpretation, within the equilateral triangle

For every intuitionistic fuzzy set the following statements are valid:[1]

[math]\displaystyle{ \begin{array}{r c l} & \\ \overline{\Box \overline{A}} & = & \Diamond A \\ \overline{\Diamond \overline{A}} & = & \Box A \\ \Box \Box A & = & \Box A \\ \Box \Diamond A & = & \Diamond A \\ \Diamond \Box A & = & \Box A \\ \Diamond \Diamond A & = & \Diamond A \end{array} }[/math]

Proof of the first statement:

[math]\displaystyle{ \begin{array}{r l} & \\ \overline{\Box \overline{A}} \ = & \overline{\Box \lbrace \langle x, \nu_A(x), \mu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \overline{\lbrace \langle x, \nu_A(x), 1 - \nu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace \\ = & \Diamond A \end{array} }[/math]

The following statements are also valid:[2]

[math]\displaystyle{ \begin{array}{r c l} & \\ \Box (A \cap B) & = & \Box A \cap \Box B \\ \Box (A \cup B) & = & \Box A \cup \Box B \\ \overline{\Box (\overline{A} + \overline{B})} & = & \Diamond A . \Diamond B \\ \overline{\Box (\overline{A} . \overline{B})} & = & \Diamond A + \Diamond B \\ \Diamond (A \cap B) & = & \Diamond A \cap \Diamond B \\ \Diamond (A \cup B) & = & \Diamond A \cup \Diamond B \\ \overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\ \overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\ \end{array} }[/math]

Proof of the first statement:

[math]\displaystyle{ \begin{array}{r l} & \\ & \Box (A \cap B) \ = \\ = & \Box \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), 1 - \min(\mu_A(x), \mu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \min(\mu_A(x), \mu_B(x)), \max(1 - \mu_A(x), 1 - \mu_B(x)) \rangle \ | \ x \in E \rbrace \\ = & \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \ | \ x \in E \rbrace \cap \lbrace \langle x, \mu_B(x), 1 - \mu_B(x) \rangle \ | \ x \in E \rbrace \\ = & \Box A \cap \Box B \end{array} }[/math]

References

  1. Proposition 1.42, page 61 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.
  2. Theorem 1.43, page 62 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.