Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Issue:On IF-semistates: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume" |
||
(2 intermediate revisions by one other user not shown) | |||
Line 17: | Line 17: | ||
{{issue/data | {{issue/data | ||
| conference = | | conference = | ||
| issue = [[Notes on Intuitionistic Fuzzy Sets/22/1|"Notes on | | issue = [[Notes on Intuitionistic Fuzzy Sets/22/1|"Notes on Intuitionistic Fuzzy Sets", Volume 22 (2016) Number 1]], pages 27—34 | ||
| file = NIFS-22-1-27-34.pdf | | file = NIFS-22-1-27-34.pdf | ||
| format = PDF | | format = PDF | ||
Line 28: | Line 28: | ||
# Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets. Springer, Berlin. | # Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets. Springer, Berlin. | ||
# Cignoli L., D’Ottaviano M., & Mundici, D. (2000) Algebraic Foundations on Many-valed Reasoning, Kluwer, Dordrecht. | # Cignoli L., D’Ottaviano M., & Mundici, D. (2000) Algebraic Foundations on Many-valed Reasoning, Kluwer, Dordrecht. | ||
# Ciungu, L. & | # Ciungu, L. & Riečan, B. (2009) General form of probabilities on IF-sets. Fuzzy Logic and Applications. Proc. WILF Palermo, 101–107. | ||
# Ciungu L. & | # Ciungu L. & Riečan, B. (2010) Representation theorem for probabilities on IFS-events. Information Sciences, 180, 703–708. | ||
# Grzegorzewski, P. & Mrowka, E. (2002) Probabilitty on intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski, et al. eds.), 105–115. | # Grzegorzewski, P. & Mrowka, E. (2002) Probabilitty on intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski, et al. eds.), 105–115. | ||
# Montagna, F. (2000) An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. (D. Mundici et al. eds.), Special Issue on Logics of Uncertainty, 9, 91–124. | # Montagna, F. (2000) An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. (D. Mundici et al. eds.), Special Issue on Logics of Uncertainty, 9, 91–124. | ||
# Mundici, D. (1986) Interpretation of AFC? algebras in Łukasiewicz sentential calculus. J. Funct. Anal., 56, 889– 894. | # Mundici, D. (1986) Interpretation of AFC? algebras in Łukasiewicz sentential calculus. J. Funct. Anal., 56, 889– 894. | ||
# | # Riečan, B. (2003) A descriptive definition of probability on intutionistic fuzzy sets. In: EUSFLAT’2003 (M. Wagenecht, R. Hampet eds.), 263–266. | ||
# | # Riečan, B. (2005) On the probability on IF-sets and MV-algebras. Notes on Intuitionistic Fuzzy Sets, 11(6), 21–25. | ||
# | # Riečan, B. (2006) On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 152, 1485–1490. | ||
# | # Riečan, B. (2012) Analysis of Fuzzy Logic Models. In: Intelligent Systems (V. M. Koleshko ed.) INTECH, 219–244. | ||
# | # Riečan, B. (2015) On finitely additive IF-states. In: Intelligent Systems 2014. Proc. 7th Conf. IEEE (P. Angelov et al. eds), Springer 148–156. | ||
# | # Riečan, B., & Mundici, D. (2002) Probability in MV-algebras. Handbook of Measure Theory (E. Pap ed.), Elsevier, Heidelberg. | ||
# | # Riečan, B. & Neubrunn, T. (1997) Integral, Measure, and Ordering, Kluwer, Dordrecht. | ||
| citations = | | citations = | ||
| see-also = | | see-also = | ||
}} | }} |
Latest revision as of 11:06, 29 August 2024
shortcut
|
|