From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
shortcut
|
http://ifigenia.org/wiki/issue:nifs/27/1/53-59
|
Title of paper:
|
Note on one inequality and its application in intuitionistic fuzzy sets theory. Part 1
|
Author(s):
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 1, pages 53–59
|
DOI:
|
https://doi.org/10.7546/nifs.2021.27.1.53-59
|
Download:
|
PDF (199 Kb, File info)
|
Abstract:
|
The inequality [math]\displaystyle{ \mu^{\frac{1}{\nu}} + \nu^{\frac{1}{\mu}} \leq 1/2 }[/math] is introduced and proved, where [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \nu }[/math] are real numbers, for which [math]\displaystyle{ \mu, \nu \in [0, 1] }[/math] and [math]\displaystyle{ \mu + \nu \leq 1 }[/math]. The same inequality is valid for [math]\displaystyle{ \mu = \mu_A(x), \nu = \nu_A(x) }[/math], where [math]\displaystyle{ \mu_A }[/math] and [math]\displaystyle{ \nu_A }[/math] are the membership and the non-membership functions of an arbitrary intuitionistic fuzzy set [math]\displaystyle{ A }[/math] over a fixed universe [math]\displaystyle{ E }[/math] and [math]\displaystyle{ x \in E }[/math]. Also, a generalization of the above inequality for arbitrary [math]\displaystyle{ n \geq 2 }[/math] is proposed and proved.
|
Keywords:
|
Inequality, Intuitionistic fuzzy sets.
|
AMS Classification:
|
03E72
|
References:
|
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- Fikhtengolts, G. (1965). The Fundamentals of Mathematical Analysis. Vol. 2, Elsevier.
- Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|