As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Properties of an intuitionistic fuzzy kernel and an intuitionistic fuzzy subsemiautomaton

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/23/5/112-124)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/5/112-124
Title of paper: Properties of an intuitionistic fuzzy kernel and an intuitionistic fuzzy subsemiautomaton
Author(s):
K. Jency Priya
Post Graduate and Research Department of Mathematics, St. Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamilnadu, India
jencypriya9@gmail.com
T. Rajaretnam
Post Graduate and Research Department of Mathematics, St. Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamilnadu, India
t_rajaretnam@yahoo.com
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 5, pages 112—124
Download:  PDF (165 Kb  Kb, File info)
Abstract: In this paper, intuitionistic fuzzy kernel and intuitionistic fuzzy subsemiautomaton are defined over an intuitionistic fuzzy semiautomaton (IFSA) S = (Q; Σ, A). Proved the existence of intuitionistic fuzzy homomorphism and strong intuitionistic fuzzy homomorphism on both intuitionistic fuzzy kernel and intuitionistic fuzzy subsemiautomaton over S. It is proved that product of two intuitionistic fuzzy kernel is an intuitionistic fuzzy kernel on S; product of intuitionistic fuzzy kernel and intuitionistic fuzzy subsemiautomaton is an intuitionistic fuzzy subsemiautomaton over S.
Keywords: Intuitionistic fuzzy semiautomaton, Intuitionistic fuzzy kernel and intuitionistic fuzzy subsemiautomaton.
AMS Classification: 03F55, 03F45.
References:
  1. Anthony, J. M. & Sherwood, H. (1982) A characterization of fuzzy groups. Fuzzy Sets and Systems, 7, 297–305.
  2. Atanassov, K. T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1989) More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37–46.
  4. Bhakat, S. K. (2000) (η, ε)-fuzzy normal, quasinormal and maximal Subgroups. Fuzzy Sets and Systems, 112, 299–312.
  5. Das, P. (1997) On some properties of fuzzy semiautomaton over a finite group. Information Sciences, 101, 71–84.
  6. Jency Priya, K., Telesphor, L., Jeny Jordon, A. & Rajaretnam, T. (2014) An Intuitionistic Fuzzy Finite Automaton – Homomorphism and Admissible Relation, IOSR Journal of Mathematics (IOSR-JM), 10(6) Ver. V, 51–57.
  7. Jun, Y. B. (2005) Intuitionistic fuzzy finite state machines. J Appl Math Comput. 17(1–2), 109–120.
  8. Malik, D. S. & Mordeson, J. N. (2002) Fuzzy Automata and L, Theory and Applications, CRC.
  9. Rosenfeld, A. (1971) Fuzzy groups. Journal of Mathematical Analysis and Applications, 35, 512–517.
  10. Santos, E. S. (1968) Maximum automata. Inform Control, 12, 367–377.
  11. Wee, W. G. & Fu, K. S. (1969) A formulation of fuzzy automata and its application as a model of learning systems. IEEE Trans. Syst. Man. Cybern., 5, 215–223.
  12. Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.