Title of paper:
|
Intuitionistic fuzzy basis of an intuitionistic fuzzy vector space
|
Author(s):
|
Moumita Chiney
|
Department of Mathematics, Visva-Bharati, Santiniketan – 731235, West Bengal, India
|
moumi.chiney@gmail.com
|
S. K. Samanta
|
Department of Mathematics, Visva-Bharati, Santiniketan – 731235, West Bengal, India
|
syamal_123@ahoo.co.in
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 4, pages 62—74
|
Download:
|
PDF (157 Kb Kb, File info)
|
Abstract:
|
In the present paper the notion of intuitionistic fuzzy vector space is introduced and a representation theorem is established. The notion of intuitionistic fuzzy basis has been developed.
|
Keywords:
|
Intuitionistic fuzzy sets, Intuitionistic fuzzy vector space, Intuitionistic fuzzy basis.
|
AMS Classification:
|
03E72, 15A03.
|
References:
|
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1994) New operations defined over intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2), 137–142.
- Biswas, R. (1989) Intuitionistic fuzzy subgroups, Math. Forum, 10, 37–46.
- Biswas, R. (1997) On fuzzy sets and intuitionistic fuzzy sets, Notes on IFS, 3, 3–11.
- Chen, Wenjuan & Zhang, Shunhua (2009) Intuitionistic fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals, Computers and Mathematics with Applications, 58, 1645–1661.
- Coker, D. (1997) An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81–89.
- Davvaz, B. Dudek, W. A. & Jun, Y. B. (2006) Intuitionistic fuzzy H v submodules. Information Sciences, 176, 285–300.
- De, S. K., Biswas, R. & Roy, A. R. (2001) An application of intuitionistic fuzzy sets in medical diagnostic, Fuzzy sets and systems, 117(2), 209–213.
- Ejegwa, P. A., Akubo, A. J. & Joshua, O. M. (2014) Intuitionistic fuzzy set and its application in career determination via normalized euclidean distance method, European Scientific Journal, 10(15), 529–536.
- Hur, K., Jang, S. Y. & Kang, H. W. (2003) Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 3(1), 72–77.
- Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25, 19–41.
- Katsaras, A. K. & Liu, D. B. (1977) Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl., 58, 135–146.
- Mohammed, M. J. & Ataa, G. A. (2014) On Intuitionistic fuzzy topological vector space, Journal of College of Education for Pure Sciences, 4, 32–51.
- Mondal, K. K. & Samanta, S. K. (2013) A study on Intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets, 9(1), 1–32.
- Park, J. H. (2004) Intuitionstic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
- Padmapriya, S., Uma, M. K. & Roja, E. (2014) A study on intuitionistic fuzzy topological* groups, Annals of Fuzzy Mathematics and Informatics, 7(6), 991–1004.
- Pradhan , R. & Pal, M. (2012) Intuitionistic fuzzy linear transformations, Annals of Pure and Applied Mathematics, 5(1), 57–68.
- Saadati, R. & Park, J. H. (2006) On the Intuitionistic Fuzzy Topological Spaces. Chaos, Solitons and Fractals, 27, 331–344.
- Shi, F. G. & Huang, C. E. (2010) Fuzzy bases and the fuzzy dimension of fuzzy vector spaces, Math. Commun., 15(2), 303–310.
- Szmidt, E. & Kacprzyk, J. (1996) Intuitionistic fuzzy sets in group decision making, NIFS, 2(1), 11–14.
- Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|