As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:An intuitionistic fuzzy evaluation of the "subset" relation between two crisp sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/4/75-79)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/4/75-79
Title of paper: An intuitionistic fuzzy evaluation of the "subset" relation between two crisp sets
Author(s):
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
krat@bas.bg
Guy de Tré
Ghent University, Department of Telecommunications and Information Processing, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
Guy.DETRE@UGent.be
Presented at: 3rd International Intuitionistic Fuzzy Sets Conference, 9 Aug – 1 Sep 2016, Mersin, Turkey
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 4, pages 75—79
Download:  PDF (123  Kb, File info)
Abstract: In this paper we propose an intuitionistic evaluation method for the is subset of relationship between two crisp sets. The subset comparison operator is an important component for different information management tasks, including querying, decision support and data quality handling. Considering it in an intuitionistic fuzzy logic framework provides us with a tool for developing semantic richer information management techniques.
Keywords: Intuitionistic fuzzy evaluation, Set comparison, Subset relationship.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (1984) Intuitionistic fuzzy relations. Third Int. Symp. “Automation and Sci. Instrumentation”, Varna, Oct. 1984, Proc. part II, 56-57.
  2. Atanassov, K. (1988) Two variants of intuitonistic fuzzy propositional calculus. Preprint IMMFAIS-5-88, Sofia; Reprinted in: Int. J. Bioautomation, 2016, 20(S1), S17-S26.
  3. Atanassov, K. (1999) Intuitionistic Fuzzy Sets, Springer, Heidelberg.
  4. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
  5. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013) On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  6. Burillo, P., & Bustince, H. (1995) Intuitionistic fuzzy relations. I, Mathware and Soft Computing, 2(1), 5–38.
  7. Burillo, P., & Bustince, H. (1995) Intuitionistic fuzzy relations. II: Effect of Atanassov’s operators on the properties of the intuitionistic fuzzy sets, Mathware and Soft Computing, 2(2), 117–148.
  8. Fraenkel, A., & Bar-Hillel Y. (1958) Foundations of Set Theory, Amsterdam, North-Holland Publ. Co.
  9. Kuratowski K., & Mostowski, A. (1967) Set Theory, Amsterdam, North-Holland Publ. Co.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.