As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On IF-numbers

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/3/9-13)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/3/9-13
Title of paper: On IF-numbers
Author(s):
Beloslav Riečan
Faculty of Natural Sciences, Matej Bel University, Department of Mathematics, Tajovskeho 40, 974 01 Banska Bystrica, SLOVAKIA
Mathematical Institute of Slovak Acad. of Sciences, Stefanikova 49, SK-81473 Bratislava, SLOVAKIA
riecan@umb.sk
Daniela Kluvancová
Faculty of Natural Sciences, Matej Bel University, Department of Mathematics, Tajovskeho 40, 974 01 Banska Bystrica, SLOVAKIA
Mathematical Institute of Slovak Acad. of Sciences, Stefanikova 49, SK-81473 Bratislava, SLOVAKIA
kluvancova.daniela@umb.sk
Presented at: 20th International Conference on Intuitionistic Fuzzy Sets, 2–3 September 2016, Sofia, Bulgaria
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 3, pages 9—13
Download:  PDF (136  Kb, File info)
Abstract: In the paper analogously to the notion of fuzzy numbers ([10, 11, 12, 13, 14, 18], the notion of the IF-number is introduced, using a new approach and it is studied. Especially it is proved that the space of all IF-numbers with a convenient metric function is a complete metric space.
Keywords: Intuitionistic fuzzy sets, Fuzzy numbers, Metric spaces.
AMS Classification: 03E72, 08A72.
References:
  1. Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Studies in Fuzziness and Soft Computing. Physica Verlag, Heidelberg.
  2. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  3. Atanassov, K. (2007) Remark on intuitionistic fuzzy numbers. Notes on Intuitionistic Fuzzy Sets, 13(3), 29–32.
  4. Atanassov, K. T., Vassilev, P. M., & Tsvetkov, R. T. (2013) Intuitionistic Fuzzy Sets, Measures and Integrals. Prof. M. Drinov Academic Publishing House, Sofia.
  5. Ban, A. (2006) Intuitionistic Fuzzy Measures. Theory and Applications. Nova Sci. Publishers, New York.
  6. Ban, A., & Coroianu, L. (2011) Approximations of intuitionistic fuzzy numbers generated from approximations of fuzzy numbers. Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Vol. I: Foundations. Warsaw, SRI Polish Academy of Sciences, 43–61.
  7. Boccuto, A., Riečan, B., Vrábelová, & M. Kurzweil (2009) Henstock Integral in Riesz Spaces, Bentham.
  8. Burillo, P., Bustince, H. & Mohedano, V. (1994) Some definitions of intuitionistic fuzzy number. First properties. Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, 28–30 Sept. 1994, 53–55.
  9. Ciungu, L., & Riečan, B. (2010) Representation theorem for probabilities on IFS-events. Information Sciences, 180, 703–708.
  10. Congxin, W., & Gong, Z. (2001) On Henstock integral of fuzzy-number-valued functions, Fuzzy Sets and Systems, 120(3), 523–532.
  11. Congxin, W., & Ming, M. (1991) On embeding problem of fuzzy number space: Part 1. Fuzzy Sets and Systems 44, 33–38.
  12. Goetchel, R., & Voxman,W. (1986) Elementary fuzzy calculus. Fuzzy Sets and Systems, 18, 31–43. 12
  13. Guang-Quan, Z. (1991) Fuzzy continuous function and its properties. Fuzzy Sets and Systems, 43, 159–171.
  14. Ming, M. (1993) On embedding problem of fuzzy number space. Part 4. Fuzzy Sets and Systems, 58, 185–193.
  15. Riečan, B. (2012) Analysis of Fuzzy Logic Models. Intelligent Systems (V. M. Koleshko ed.), INTECH, 219–244.
  16. Riečan, B., & Mundici, D. (2002) Probability inMV-algebras. Handbook of Measure Theory (E. Pap ed.), Elsevier, Heidelberg.
  17. Riečan, B., & Neubrunn, T. (1997) Integral, Measure, and Ordering. Kluwer, Dordrecht.
  18. Uzzal Afsan, B. M. (2016) On convergence theorems for fuzzy Henstock integrals. Iranian J. of Fuzzy Systems (in press).
  19. Zadeh, L. A. (1965) Fuzzy sets. Inform. and Control, 8, 338–358.
  20. Zadeh, L. A. (1968) Probability measures of fuzzy events. J. Mat. Anal. Apl., 23, 421–427.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.