As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:On Fodor’s type of intuitionistic fuzzy implication and negation

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/21/2/25-34)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/21/2/25-34
Title of paper: On Fodor’s type of intuitionistic fuzzy implication and negation
Author(s):
Krassimir Atanassov
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas–8000, Bulgaria
krat@bas.bg
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01–447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01–447 Warsaw, Poland
kacprzyk@ibspan.waw.pl


Presented at: 19th International Conference on Intuitionistic Fuzzy Sets, 4–6 June 2015, Burgas, Bulgaria
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 21, 2015, Number 2, pages 25—34
Download:  PDF (138  Kb, File info)
Abstract: A Fodor’s type of intuitionistic fuzzy implication is constructed. Its relation with some forms of Klir and Yuan’s axioms are studied. Some open problems, related to the operations of intuitionistic fuzzy propositional calculus, are formulated.
Keywords: Implication, Intuitionistic fuzzy logic, Intuitionistic logic, Negation.
AMS Classification: 03E72.
References:
  1. Atanassov, K. Two variants of intuitonistc fuzzy propositional calculus. Preprint IM-MFAIS-5-88, 1998, Sofia.
  2. Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
  3. Atanassov, K. On intuitionistic fuzzy negations and De Morgan Laws. Proc. of Eleventh International Conf. IPMU 2006, Paris, July 2–7, 2006, 2399–2404.
  4. Atanassov, K. On Intuitionistic Fuzzy Sets Theory. Springer, Berlin, 2012.
  5. Atanassov, K., E. Szmidt, E., and J. Kacprzyk. On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 2013, 1–13.
  6. Baczynski, M., and B. Jayaram, Fuzzy Implications, Springer, Berlin, 2008.
  7. Klir, G., and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey, 1995.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.