As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:A note on the Hausdorff distance between Atanassov's intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/15/1/1-12)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/15/1/1-12
Title of paper: A note on the Hausdorff distance between Atanassov's intuitionistic fuzzy sets
Author(s):
Eulalia Szmidt
Systems Research Institute - Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute - Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Presented at: 13th ICIFS, Sofia, 9-10 May 2009
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 15 (2009) Number 1, pages 1—12
Download:  PDF (111  Kb, File info)
Abstract: In this paper we address the problem of constructing the Hausdorff distance between A-IFSs based on the Hamming metric. We pay particular attention to the consistency of the metric used and the essence of the Hausdorff distances.
Keywords: Intuitionistic fuzzy sets, Distances, Hausdorff metric.
References:
  1. Aichholzer O., Alt H. and Rote G. (1997) Matching shapes with a reference point. Int. J. of Computational Geometry and Applications 7, 349-363.
  2. Atallah M.J. (1983), A linear time algorithm for the Hausdorff distance between convex polygons. Information Processing Letters, Vol. 17, pp. 207-209.
  3. Atanassov K. (1983), Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia(Deposed in Centr. Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  4. Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.
  5. Atanassov K., Tasseva V., Szmidt E. and Kacprzyk J. (2005) On the geometrical interpretations of the intuitionistic fuzzy sets. In: Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. (Eds. Atanassov K., Kacprzyk J., Krawczak M., Szmidt E.), EXIT, Warsaw 2005.
  6. Bustince H., Mohedano V., Barrenechea E., and Pagola M. (2006) An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. IPMU'2006, 2383{2390.
  7. Bustince H., Mohedano V., Barrenechea E., and Pagola M. (2005) Image thresholding using intuitionistic fuzzy sets. In: Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. (Eds. Atanassov K., Kacprzyk J., Krawczak M., Szmidt E.), EXIT, Warsaw 2005.
  8. Deng-Feng Li (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences, 70, 73-85.
  9. Grunmaum B. (1967) Convex Polytopes, Wiley-Interscience, New York.
  10. Huttenlocher D., Klanderman G., and Rucklidge W. (1993) Comparing images using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 15 (9), 850-863.
  11. Huttenlocher D. and Rucklidge W. (1993) A multi-resolution technique for computing images using the Hausdorff distance. Proc. Computer Vision and Pattern Recognition, New York, 705-708.
  12. Narukawa Y. and Torra V. (in press) Non-monotonic fuzzy measure and intuitionistic fuzzy set. Accepted for MDAI'06.
  13. Olson C. and Huttenlocher D. (1997) Automatic target recognition by matching oriented edge pixels. IEEE Trans. on Image Processing 6 (1), 103-113.
  14. Peitgen H.O., Jurgens H. and Saupe D. (1992) Introduction to Fractals and Chaos. Springer-Verlag New York.
  15. Preparata F.P. and Shamos M.I. (1985) Computational Geometry. An Introduction. Springer-Verlag New York.
  16. W. Rucklidge (1995) Lower bounds for the complexity of Hausdorff distance. Tech. report TR 94-1441, Dept. of computer science, Cornell University, NY. A similar title appeared in Proc. 5th Canad. Conf. on Comp. Geom. (CCCG'93, Waterloo, CA), 145-150.
  17. W. Rucklidge (1995) Efficient computation of the minimum Hausdorff distance for visual recognition. Ph.D. thesis, Dept. of computer science, Cornell University, NY.
  18. W. J. Rucklidge (1995) Locating objects using the Hausdorff distance. Proc. of 5th Int. Conf. on Computer Vision (ICCV'95, Cambridge, MA), 457-464.
  19. W. J. Rucklidge (1996) Efficient visual recognition using the Hausdorff distance. Lecture Notes in Computer Science, 1173, Springer-Verlag, NY.
  20. W. J. Rucklidge (1997). Efficiently locating objects using the Hausdorff distance. Int. J. of Computer Vision, 24(3), 251-270.
  21. Szmidt E. and Baldwin J. (2003) New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 9 (3), 60-76.
  22. Szmidt E. and Baldwin J. (2004) Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 10 (3), 15-28.
  23. Szmidt E. and Baldwin J. (2006) Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. 2006 IEEE World Congress on Computational Intelligence, 237{243.
  24. Szmidt E. and Kacprzyk J. (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 114, No. 3, 505-518.
  25. Szmidt E. and Kacprzyk J. (2006) Distances between intuitionistic fuzzy sets: straightforward approaches may not work. 3rd International IEEE Conference Intelligent Systems IS06, London, 716-721.
  26. Szmidt E. and Kukier M. (2006) Classification of imbalanced and overlapping classes using intuitionistic fuzzy sets. 3rd International IEEE Conference Intelligent Systems IS06, London, 722-727.
  27. Szmidt E., Kukier M. (2008) A new approach to classication of imbalanced classes via Atanassov's intuitionistic fuzzy sets. In: Hsiao-Fan Wang (Ed.): Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. Idea Group, 65-102.
  28. Szmidt E., Kukier M. (2008) Atanassov's intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Panagiotis Chountas, Ilias Petrounias, Janusz Kacprzyk (Eds.): Intelligent Techniques and Tools for Novel System Architectures. Springer, Berlin Heidelberg 2008, 455{471. Seria: Studies in Computational Intelligence.
  29. Tan Ch. and Zhang Q. (2005) Fuzzy multiple attribute TOPSIS decision making method based on intuitionistic fuzzy set theory. Proc. IFSA 2005, 1602-1605.
  30. Tasseva V., Szmidt E. and Kacprzyk J. (2005) On one of the geometrical interpretations of the intuitionistic fuzzy sets. Notes on IFS, Vol. 11, No. 3, 21-27.
  31. Veltkamp R. (2001) Shape Matching: similarity measures and algorithms. Proc. Shape Modelling International, Italy, IEEE Press, 187-197.
  32. Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, 338-353.
  33. Zadeh L.A. (1975) The concept of a linguistic variable and its application to approximate reasoning. INform. Sciences, 8, 199-249.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.