As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:An attempt to build an intuitionistic fuzzy Prolog machine

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/10/1/27-36)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/10/1/27-36
Title of paper: An attempt to build an intuitionistic fuzzy Prolog machine
Author(s):
Krassimir Atanassov
CLBME-Bulgarian Academy of Sciences, P.O. Box 12, Sofia-1113, Bulgaria
krat@bas.bg
Marin Marinov
FabLess Ltd, Bulgaria
marin.marinov@fab-less.com
Zlatko Zlatev
University of Twente, Holland
Z.V.Zlatev@cwi.utwente.nl
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 10 (2004) Number 1, pages 27-36
Download:  PDF (657  Kb, File info)


References:
  1. Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20, 1986
  2. Atanassov K., Two variants of intuitionistic fuzzy propositional calculus. Preprint in IM-MFAIS-5-88, Sofia, 1988
  3. Atanassov, K. Intuitionistic fuzzy Prolog, Preprint IM-MFAIS-5-89, Sofia, 1989
  4. Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint in IM-MFAIS-3-89, Sofia, 1988
  5. Atanassov K., Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Berlin, 1999.
  6. Atanassov K., Gargov G., Intuitionistic fuzzy logic. Compt. Rend. Acad. Bulg. Sci.,Tome 43, No. 3, 1990, 9-12
  7. K. Atanassov, G. Gargov, Elements of intuitionistic fuzzy logic. Part 1, Fuzzy Sets and Systems, 95 (1998), 39-52
  8. Gargov G., Atanassov K., Two results in intuitionistic fuzzy logic. Compt. Rend. Acad. Bulg. Sci., Tome 45, No. 12, 1992, 29-31
  9. Borland Inc. Turbo Prolog User's Guide version 2.0, 1988
  10. Chang Ch., Lee R., Symbolic Logic and Mechanical Theorem Proving. Academic Press New York San Francisco, London, 1973
  11. Davis M., Putnam H., A computing procedure for quantification theory, J. Assoc. Comput. Math., 1960
  12. Gilmore P. C., A proof method for quantification theory: Its justification and realization. IBM J. Res. Develop., 1960
  13. Robinson, J.A., The generalized solution principle, Machine intelligence, 1968
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.

See also