As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Norms over intuitionistic fuzzy subrings and ideals of a ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/5/72-83
Title of paper: Norms over intuitionistic fuzzy subrings and ideals of a ring
Author(s):
Rasul Rasuli
Mathematics Department, Faculty of Science, Payame Noor University (PNU), Tehran, Iran
rasulirasul@yahoo.com
Published in: "Notes on IFS", Volume 22, 2016, Number 5, pages 72—83
Download:  PDF (123  Kb, File info)
Abstract: In this paper, we apply norms over intuitionistic fuzzy subrings and ideals of a ring. We introduce the notions of intuitionistic

fuzzy subrings and ideals of a ring with respect a t-norm T and a t-conorm C and investigate some related properties under homomorphism.

Keywords: Ring theory, Norms, Fuzzy set theory, Intuitionistic fuzzy subrings, Intuitionistic fuzzy ideals, Homomorphisms, Direct products.
AMS Classification: 13Axx, 03B45, 03E72, 20K30, 20K25
References:
  1. Abu Osman, M. T. (1987) On some products of fuzzy subgroups, Fuzzy Sets and Systems, 24, 79–86.
  2. Ajmal, N. & Thomas, K. V. (1995) The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 74, 371–379.
  3. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  4. Atanassov, K. T. (1994) New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
  5. Banejee, B. & Basnet, D. Kr. (2003) Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math., 11(1), 139–155.
  6. Biswas, R. (1989) Intuitionistic fuzzy subrings, Mathematical Forum, 10, 37–46.
  7. Buckley, J. J. & Eslami, E. (2002) An introduction to fuzzy logic and fuzzy sets, Springer-Verlag, Berlin Heidelberg GmbH.
  8. Coker, D. (1997) An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81–99.
  9. Coker, D. & Es, A. H. (1995) On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 3(4), 899–909.
  10. Gurcay, H., Coker, D. & Es, A. H. (1997) On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 5(2), 355–378.
  11. Hur, K. , Jang, S. Y. & Kang, H. W. (2003) Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 3(1), 72–77.
  12. Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic fuzzy subgroups and subrings, Honam Math. J. , 25(1), 19–41.
  13. Lee, S. J. & Lee, E. P. (2000) The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc., 37(1), 63–76.
  14. Majumdar, S.& Sultana, Q. S. (1996) The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 81, 271–273.
  15. Malik, D. S., Mordeson, J. N. & Sen, M. K. (1997) Fundamentals of Abstract Algebra, McGraw Hill.
  16. Zadeh, L. A. (1965) Fuzzy sets, Inform. and Control, 8, 338–353.
  17. Zhang, Q. & Meng, G. (2000) On the lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 112, 349–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.