As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Generalized net model of telecare based on body temperature sensors

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 18:37, 4 February 2014 by Vassia Atanassova (talk | contribs) (14)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:iwgn-14-78-89
Title of paper: Generalized net model of telemedicine based on body temperature sensors
Author(s):
Velin Andonov
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria,
velin_andonov@yahoo.com
Diana Stephanova
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria,
dsteph@bio.bas.bg
Maria Esenturk
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria,
mardas@bio.bas.bg
Maia Angelova
Northumbria University, Newcastle, United Kingdom
maia.angelova@northumbria.ac.uk
Krassimir Atanassov
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria,
krat@bas.bg
Presented at: 14th IWGN, Burgas, 29-30 November 2013
Published in: Conference proceedings, pages 78-89
Download:  PDF (173  Kb, File info)
Abstract: Generalized net (GN) model of telemedicine/telehealth based on body temperature sensors is proposed. In a previous paper, GN that describes the connection between sensors and remote server was proposed. In the present model, the focus is on the process of decision making in the telemedicine/telehealth center.
Keywords: Generalized net, telemedicine, Telehealth, Body temperature sensor.
AMS Classification: 68Q85.
References:
  1. Andonov V., K. Atanassov. Generalized nets with characteristics of the places, Compt. rend. Acad. bulg. Sci., 66, 2013, No 12, 1673-1680.
  2. Asahina M., DA. Low, CJ. Mathias, Y. Fujinuma, A. Katagiri, Y. Yamanaka, J. Shimada, A. Poudel, S. Kuwabara. Skin temperature of the hand in multiple system atrophy and Parkinson’s disease. Parkinsonism and Related Disorders 19, 2013, 560-562.
  3. Atanassov, K. On Generalized Nets Theory, “Prof. M. Drinov” Academic Publishing House, Sofia, 2007
  4. Atanassov K. On Generalized Nets Theory. Prof. M. Drinov Academic Publ. House, Sofia, 2007
  5. Atanassov K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  6. Bolton CF., K. Carter, JJ. Koval. Temperature effects on conduction studies of normal and abnormal nerve. Muscle Nerve 5, 1982, 145-147.
  7. Bolton CF., Sawa GM., Carter K. The effect of temperature on human compound action potentials. J Neurol Neurosurg Psychiatry 44, 1981, 407-413.
  8. Bostock H., M. Baker.Evidence for two types of potassium channel in human motor axons in vivo. Brain Res. 462, 1988, 354-358.
  9. Bostock H., K. Cikurel, D. Burke. Threshold tracking techniques in the study the human peripheral nerve. Muscle Nerve 21, 1998, 137-158.
  10. Bostock H., M.K. Sharief, G. Reid, N.M.F. Murray. Axonal ion channel dysfunction in amyotrophic lateral sclerosis. Brain 118, 1995, 217-225.
  11. Buchthal F., A. Rosenfalck. Evoked action potentials and conduction velocity in human sensory nerves. Brain Res 1, 1966, 1-122.
  12. Cappelen-Smith C., S. Kuwabara, CS-Y. Lin, I. Mogyoros, D. Burke. Membrane properties in chronic inflammatory demyelinating polyneuropathy. Brain 124, 2001, 2439-2447.
  13. Daskalova M., S. Krustev, D. Stephanova. Temperature effects on simulated human nodal action potentials and their defining current kinetics. Scripta Scientifica Medica 45(3), 2013, 42-47.
  14. Daskalova M., D.I Stephanova. Strength-duration properties of human myelinated motor and sensory axons in normal case and in amyotrophic lateral Sclerosis. Acta Physiol. Pharmacol. Bulg. 26, 2001, 1-4.
  15. De Jesus PV., I. Hausmanowa-Petrusewicz, RI. Barchi. The effect of cold on nerve conduction of human slow and fast nerve fibres. Neurology 23, 1973, 1182-11829.
  16. Dioszeghy P., E. St̊alberg. Changes in motor and sensory nerve conduction parameters with temperature in normal and diseased nerve. Electroencephalogr Clin Neurophysiol 85, 1992, 229-235.
  17. Geerlings AHC., K. Mechelse. Temperature and nerve conduction velocity, some practical problems. Electromyogr Clin Neurophysiol 25, 1985, 253-260.
  18. Howells J., Czesnik D., Trevillion L., Burke D. 2013. Excitability and the safety margin in human axons during hyperthermia. J Physiol 591:3063-3080.
  19. Johnson EW., KJ. Olsen. Clinical value of motor nerve conduction velocity determination. JAMA 172, 1960, 2030-2035.
  20. Kaji R. Physiology of conduction block in multifocal motor neuropathy and other demyelinating neuropathies. Muscle Nerve 27, 2003, 285-296.
  21. Kiernan M.C., D. Burke, K.V. Andersen, H. Bostock. Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23, 2000, 399-409.
  22. Kiernan MC., K. Cikurel, H. Bostock. Effects of temperature on the excitability properties of human motor axons. Brain 124, 2001, 816-825.
  23. Krustev S., M. Daskalova, D. Stephanova. Myelin sheath aqueous layers do not modulate membrane fibre properties of simulated cases of paranodal internodal systematic demyelinations. Compt. rend. Acad. bulg. Sci. 63(12), 2010, 1845-1852.
  24. Krustev M., M. Daskalova, D. Stephanova. Temperature effects on simulated human internodal action potentials and their defining current kinetics. Scripta Scientifica Medica 45(4), 2013, 36-40.
  25. Krustev S.M., N. Negrev, D.I. Stephanova. The strength-duration properties in simulated demyelinating neuropathies depend on the myelin sheath aqueous layers. Scripta Scientifica Medica 44(1), 2012, 117-123.
  26. Kuwabara S., K. Ogawara, J.Y. Sung, M. Mori, K. Kanai, T. Hattori, N. Yuki, C.S. Lin, D. Burke, H. Bostock. Differences in membrane properties of axonal and demyelinating Guillain-Barre syndromes. Ann. Neurol. 52, 2002, 180-187.
  27. Lang AH., A. Puusa. Dual influence of temperature on compound nerve action potential. J Neurol Sci 51, 1981, 81-88.
  28. Lowitzsch K., HC. Hopf, J. Galland. Changes of sensory conduction velocity and refractory periods with decreasing tissue temperature in man. J Neurol 216, 1977, 181-188.
  29. Nodera H., H. Bostock, S. Kuwabara, T. Sakamoto, K. Asanuma, J.Y. Sung, K. Ogawara, N. Hattori, M. Hirayama, G. Sobue, R. Kaji. Nerve excitability properties in Charcot-Marie-Tooth disease type 1A. Brain 127, 2004, 203-211.
  30. Nodera H., R. Kaji. Nerve excitability testing and its clinical application to neuromuscular diseases. Clin. Neuphysiol. 117, 2006, 1902-1916.
  31. Priori A., B. Bossi, G. Ardolino, L. Bertolasi, M. Carpo, E. Nobile-Orazio, S.Barbieri. Pathophysiological heterogeneity of conduction blocks in multifocal motor neuropathy. Brain 128, 2005, 1642-1648.
  32. Stephanova D.I. Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre. Biol. Cybern. 84, 2001, 301-308
  33. Stephanova D.I., A.S. Alexandrov. Simulating mild systematic and focal demyelinating neuropathies: membrane property abnormalities. J. Integr. Neurosci. 5, 2006, 595-623.
  34. Stephanova D.I., H. Bostock. A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biol. Cybern. 73, 1995, 275-280.
  35. Stephanova D.I., H. Bostock. A distributed-parameter model of myelinated human motor nerve fibre: temporal and spatial distributions of electrotonic potentials and ionic currents. Biol. Cybern. 74, 1996, 543-547.
  36. Stephanova D.I., M. Daskalova. Extracellular potentials of human motor myelinated nerve fibres in normal case and in amyotrophic lateral sclerosis. Electromyogr. Clin. Neurophysiol. 42, 2002, 443-448.
  37. Stephanova D.I., M. Daskalova.. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clin. Neuro-physiol. 116, 2005a, 1159-1166.
  38. Stephanova D.I., M. Daskalova. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clin. Neurophysiol. 116, 2005b, 2334-2341.
  39. Stephanova D.I., M. Daskalova. Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. Eur. Biophys. J. 37, 2008, 183-195.
  40. Stephanova D.I., M. Daskalova. Effects of temperature on simulated electrotonic potentials and their current kinetics of human motor axons at 20-42 C. Clin. Neurophysiol, 2014. (in press)
  41. Stephanova DI., B. Dimitrov. Models and methods for investigation of the human motor nerve fibre. In: Stephanova DI, Dimitrov B, editors. Computational Neuroscience: Simulated Demyelinating Neuropathies and Neuronopathies. Boca Raton (USA), CRC Press, Taylor and Francis Group, 2013, 18-32.
  42. Stephanova D.I., M. Daskalova, A.S. Alexandrov. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clin. Neurophysiol. 116, 2005, 1153-1158.
  43. Stephanova D.I., M. Daskalova, A.S. Alexandrov. Differences in membrane properties in simulated cases of demyelinating neuropathies. Internodal focal demyelination without conduction block. Journal of Biological Physics 32, 2006, 61-71.
  44. Stephanova D.I., M. Daskalova, A.S. Alexandrov. Differences in membrane properties in simulated cases of demyelinating neuropathies. Internodal focal demyelination with conduction block. Journal of Biological Physics 32, 2006b, 129-144.
  45. Stephanova D.I., M. Daskalova, A.S. Alexandrov. Channels, currents and mechanisms of accommodative processes in simulated cases of systematic demyelinating neuropathies. Brain Research 1171, 2007b, 138-151.
  46. Stephanova D.I., S.M. Krustev, M. Daskalova. The aqueous layers within the myelin sheath modulate the membrane properties of simulated hereditary demyelinating neuropathies, J. Integr. Neurosci., 10(1), 2011a, 89-103.
  47. Stephanova D.I., S.M. Krustev, N. Negrev, M. Daskalova. The myelin sheath aqueous layers improve the membrane properties of simulated chronic demyelinating neuropathies, J. Integr. Neurosci. 10(1), 2011b, 105-120.
  48. Stephanova D.I., N. Trayanova, A. Gydikov, A. Kossev. Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor. Biol. Cybern. 61, 1989, 205-210.
  49. Sung J.Y., S. Kuwabara, R. Kaji, K. Ogawara, M. Mori, K. Kanai, H. Nodera, T. Hattori, H. Bostock. Threshold electrotonus in chronic inflammatory demyelinating polyneuropathy: correlation with clinical profiles. Muscle Nerve 29, 2004, 28-37.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.