Title of paper:
|
An attempt to build an intuitionistic fuzzy Prolog machine
|
Author(s):
|
Krassimir Atanassov
|
CLBME-Bulgarian Academy of Sciences, P.O. Box 12, Sofia-1113, Bulgaria
|
krat@bas.bg
|
Marin Marinov
|
FabLess Ltd, Bulgaria
|
marin.marinov@fab-less.com
|
Zlatko Zlatev
|
University of Twente, Holland
|
Z.V.Zlatev@cwi.utwente.nl
|
|
Published in:
|
"Notes on IFS", Volume 10 (2004) Number 1, pages 27-36
|
Download:
|
PDF (657 Kb, File info)
|
References:
|
- Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20, 1986
- Atanassov K., Two variants of intuitionistic fuzzy propositional calculus. Preprint in IM-MFAIS-5-88, Sofia, 1988
- Atanassov, K. Intuitionistic fuzzy Prolog, Preprint IM-MFAIS-5-89, Sofia, 1989
- Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint in IM-MFAIS-3-89, Sofia, 1988
- Atanassov K., Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag, Berlin, 1999.
- Atanassov K., Gargov G., Intuitionistic fuzzy logic. Compt. Rend. Acad. Bulg. Sci.,Tome 43, No. 3, 1990, 9-12
- K. Atanassov, G. Gargov, Elements of intuitionistic fuzzy logic. Part 1, Fuzzy Sets and Systems, 95 (1998), 39-52
- Gargov G., Atanassov K., Two results in intuitionistic fuzzy logic. Compt. Rend. Acad. Bulg. Sci., Tome 45, No. 12, 1992, 29-31
- Borland Inc. Turbo Prolog User's Guide version 2.0, 1988
- Chang Ch., Lee R., Symbolic Logic and Mechanical Theorem Proving. Academic Press New York San Francisco, London, 1973
- Davis M., Putnam H., A computing procedure for quantification theory, J. Assoc. Comput. Math., 1960
- Gilmore P. C., A proof method for quantification theory: Its justification and realization. IBM J. Res. Develop., 1960
- Robinson, J.A., The generalized solution principle, Machine intelligence, 1968
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
See also
|
|
|