As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy n-ary systems

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 20:03, 3 June 2009 by Mighty Bot (talk | contribs) (Borislav: shortcut eusflat-2003-198-205)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:eusflat-2003-198-205
Title of paper: Intuitionistic fuzzy n-ary systems
Author(s):
Wiesław Dudek
Institute of Mathematics, Technical University, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
dudek@im.pwr.wroc.pl
Presented at: 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10-12, 2003
Published in: Conference proceedings, pages 198-205
Download:  PDF (143  Kb, File info)
Abstract: We introduce the basic concepts on intuitionistic fuzzy sub-algebras on n-ary groupoids, i.e., on algebras containing one fundamental n-ary operation. We describe some similarities and differences between the n-ary and binary case. In the case of n-ary quasigroups and groups we suggest the common method of investigations based on some methods used in the universal algebra.
Keywords: n-ary system, n-ary quasigroup, intuiutionistic fuzzy n-ary quasigroup
References:
  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96
  2. V. D. Belousov, n-Ary Quasigroups, (Russian), Sţiinţa, Chişinău 1972.
  3. W. A. Dudek, Remarks on n-groups, Demonstratio Math. 13(1980), 165-181:
  4. W. A. Dudek, Fuzzy subquasigroups, Quasigroups Related Systems 5 (1998), 81-98:
  5. W. A. Dudek, Fuzzification on n-ary groupoids, Qusigroups Related Systems, 7 (2000), 45-66:
  6. W. A. Dudek, Idempotents in n-ary semigroups, Southeast Asian Bull. Math. 25 (2001), 97-104:
  7. W. A. Dudek, K. Głazek, B. Gleichgewicht, A note on the axioms of n-groups, in Colloquia Math. Soc. J. Bolyai 29 ”Universal Algebra”, Esztergom (Hungary) 1977, 195 ¡ 202: (North-Holland, Amsterdam 1982.)
  8. W. A. Dudek, Y. B. Jun, Intuitionistic fuzzy approach to BCC-algebras, Bul. Acad. Sci. Rep. Moldova ser. Mat. 3(37) (2001), 7-12:
  9. W. A. Dudek, J. Michalski, On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281-301:
  10. J. W. Grzymała-Busse, Automorphisms of polyadic automata, J. Assoc. Computing Machinery 16 (1969), 208-219:
  11. R. Kerner, Ternary algebraic structures and their applications in physics, Preprint of Univ. P. & M. Curie, Paris 2000.
  12. K. H. Kim, W. A. Dudek, Y. B. Jun, On intuitionistic fuzzy subquasigroups of a quasigroups, Quasigroups Related Systems 7 (2000), 15-28:
  13. G. L. Mullen, V. Shcherbacov, Properties of codes with one check symbol from a quasigroup point of view, Bull. A. S. Rep. Moldova, ser. Math. 40 (2002), 71-86:
  14. H. O. Pflugfelder, Quasigroups and loops: introduction, Sigma Series in Pure Math., vol. 7, Heldermann Verlag, Berlin 1990.
  15. E. L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350:
  16. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517:
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.