As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic L-fuzzy congruence on a ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 17:49, 28 August 2024 by Vassia Atanassova (talk | contribs) (Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/19/1/7-20
Title of paper: Intuitionistic L-fuzzy congruence on a ring
Author(s):
K. Meena
P. G. Research Centre in Mathematics, Bharata Mata College, Kochi–682 021, Kerala, India
meena_k11@yahoo.co.in
K. V. Thomas
P. G. Research Centre in Mathematics, Bharata Mata College, Kochi–682 021, Kerala, India
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 19, 2013, Number 1, pages 7—20
Download:  PDF (169  Kb, File info)
Abstract: In this paper we discuss and study some properties of intuitionistic L-fuzzy equivalence relation on a ring. We introduce the concept of intuitionistic L-fuzzy transitive closure of an intuitionistic L-fuzzy relation on a ring. Further the definition of intuitionistic L-fuzzy congruence relation on a ring is introduced and proved that the set of intuitionistic L-fuzzy congruences forms a modular lattice.
Keywords: Lattice, Intuitionistic L-fuzzy set, Intuitionistic L-fuzzy relation, Intuitionistic L-fuzzy equivalence relation, Intuitionistic L-fuzzy congruence relation.
AMS Classification: 06B10.
References:
  1. Atanassov, K. T. Intuitionistic Fuzzy Sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov, K. T., S. Stoeva. Intuitionistic L-fuzzy sets, In:- R. Trappl(Ed.), Cybernetics and Systems Research, Vol. 2, Elsevier Sci. Publ., Amsterdam, 1984, 539–540.
  3. Atanassova, L. On intuitionistic fuzzy versions of L. Zadeh's extension principle, Notes on Intuitionistic Fuzzy Sets, Vol. 13, 2007, No. 3, 33–36.
  4. Atanassov, K. T. Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
  5. Atanassov, K. T. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  6. Banerjee, B., D. K. Basnet. Intuitionistic Fuzzy Subrings and ideals, J. Fuzzy Math., Vol. 2, 2003, No. 1, 139–155.
  7. Biswas, R. Intuitionistic Fuzzy Subgroups, Math Forum, Vol. 10, 1989, 39–44.
  8. Bustince, H., P. Burillo. Intuitionistic Fuzzy Relations (Part I), Mathware and Soft Computing, Vol. 2, 1995, 5–38.
  9. Khatibi, V., G. A. Montazer. Intuitionistic Fuzzy Set vs Fuzzy Set Application in Medical Pattern Recognition, J. Artificial Intelligence in Medicine, Elsevier, Vol. 47, 2009, No. 1, 43–52.
  10. Kumar De, S., R. Biswas, A. R. Roy. Some Operations on Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol. 114, 2000, No. 4, 477–484.
  11. Kumar De, S., R. Biswas, A. R. Roy. An Application of Intuitionistic Fuzzy Sets in Medical Diagnosis, Fuzzy Sets and Systems, Vol. 117, 16 January 2001, Issue 2, 209–213.
  12. Kul Hur, Su Youn Jang, Hee Won Kang. Intuitionistic Fuzzy Congruences on a lattice, J. Appl. Math and Computing, Vol. 18, 2005, No. 1–2, 465–486.
  13. Kul Hur, Su Youn Jang, Young Bae Jun. Intuitionistic Fuzzy Congruences, Far East J. Math. Sci. (FJMS), Vol. 17, 2005, No. 1, 1–29.
  14. Kul Hur, Su Youn Jang, Young Sin Ahn. Intuitionistic Fuzzy Equivalence Relation, Honam Mathematical Journal, Vol. 27, 2005, No. 2, 163–181.
  15. Kul Hur, Su Youn Jang. The Lattice of Intuitionistic Fuzzy Congruences, IMF, Vol. 1, 2006, No. 5, 211–236.
  16. Renčová, M. An example of Applications of Intuitionistic Fuzzy Sets to Sociometry, Cybernetics and Technologies, Vol. 9, 2009, No. 2, 43–45.
  17. Meena, K., K. V. Thomas. Intuitionistic L-Fuzzy Subrings, IMF, Vol. 6, 2011, No. 52, 2561–2572.
  18. Meena, K., K. V. Thomas. Intuitionistic L-Fuzzy Rings, GJSFR(F), Vol. 12, 2012, No. 14-F, Art. 2.
  19. Rosenfeld, A. Fuzzy Groups, J. Math. Anal. Appl., Vol. 35, 1971, 512–517.
  20. Zadeh, L. A. Fuzzy Sets, Information and Control, Vol. 8, 1965, 338–353.
  21. Zeshui Xu, Jian Chen, Junjie Wu, Clustering Algorithm for Intuitionistic Fuzzy Sets, Information Sciences, Vol. 178, Issue 19, October 2008, 3775–3790.
Citations:
  1. VEERAMMAL, P., and G. VELAMMAL. "INTUITIONISTIC L-FUZZY ALMOST IDEALS." International Journal of Mathematical Archive EISSN 2229-5046 9.1 (2018), pp. 197-203.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.