Title of paper:
|
Intuitionistic fuzzy G-modules
|
Author(s):
|
P. K. Sharma
|
Post Graduate Department of Mathematics, D. A. V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar
|
Tarandeep Kaur
|
Post Graduate Department of Mathematics, D. A. V. College, Jalandhar, Punjab, India
|
tarandeepkaur41@yahoo.com
|
|
Published in:
|
"Notes on IFS", Volume 21, 2015, Number 1, pages 6—23
|
Download:
|
PDF (208 Kb, File info)
|
Abstract:
|
In this paper, the notion of intuitionistic fuzzy G-modules on a G-module M over a field K is introduced. The quotient intuitionistic fuzzy G-modules are defined and discussed. A homomorphism of G-module M onto M* is established. Also we introduced (weak) intuitionistic fuzzy G-homomorphism (isomorphism). Intersection, Sum, Product and Cartesian product of two intuitionistic fuzzy G-modules are also discussed.
|
Keywords:
|
Intuitionistic fuzzy set, Intuitionistic fuzzy G-module, (α, β)–cut set, Support, Quotient intuitionistic fuzzy G-module.
|
AMS Classification:
|
03F55, 08A72, 16D10
|
References:
|
- Abraham, T. & Sebastian, S. (2010) On fuzzy representation of fuzzy G-modules, J. Comp. & Math. Sci., 1(5), 592-597.
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1994) New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2), 1994, 137–142.
- Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
- Biswas, R. (1989) Intuitionistic fuzzy subgroups, Mathematical Forum, 10, 37–46.
- Curties, C.W. & Reiner, I. (1962) Representation Theory of Finite Groups and Associated Algebras, INC.
- Davvaz, B., Dudek, W.A., & Jun, Y.B. (2006) Intuitionistic fuzzy Hv-submodules, Information Sciences, 176, 285–300.
- Fernadez, S. (2002) Fuzzy G-modules and fuzzy representations, TAJOPAM, 1, 107–114.
- Isaac, P., & John, P. P. (2011) On Intuitionistic Fuzzy Submodules of a Module, Int. J. of Mathematical Sciences and Applications, 1(3), 1447–1454.
- Jose, S., & Kuriakose, S. (2012) Decomposition theorems of an intuitionistic fuzzy set, Notes on intuitionistic Fuzzy Sets, 18(2), 31–36.
- Naegoita, C.V., & Ralescu, D.A. (1975) Application of Fuzzy Sets in System Analysis, Birkhauser, Basel.
- Rahman, S., & Saikia, H.K. (2012) Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369–383.
- Sharma, P. K. (2013) (α, β)-Cut of intuitionistic fuzzy modules, Int. J. of Mathematical Sciences and Applications, 3(1), 11–17.
- Sharma, P. K. (2011) (α, β)-Cut of Intuitionistic fuzzy modules - II, Int. J. of Mathematical Sciences and Applications, 1(3), 1489–1492.
- Sharma, P. K. On intuitionistic fuzzy Abelian subgroups- II, Advances in Fuzzy Sets and Systems (communicated)
- Sharma, P. K., & Kaur, T. On intuitionistic fuzzy representation of intuitionistic fuzzy Gmodules, (under preparation)
- Zadeh, L. A. (1965) Fuzzy Sets, Inform. control., 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|