Title of paper:
|
Intuitionistic fuzzy δ-connectedness and θ-connectedness
|
Author(s):
|
Salah Abbas
|
Department of Mathematics, Faculty of Science, Sohag University, sohag 82524, Egypt
|
|
Biljana Krsteska
|
Faculty of Mathematics and Natural Science, Univ. St. Cyril and Methodius Gazi, Baba b.b. P.O.162,1000 Skopje, Macedonia
|
|
|
Published in:
|
"Notes on IFS", Volume 17 (2010) Number 1, pages 48—57
|
Download:
|
PDF (104 Kb, File info)
|
Abstract:
|
We introduce and study the concepts of (r,s)-fuzzy δ-connected and (r,s)-fuzzy θ-connected for fuzzy sets in an intuitionistic fuzzy topological spaces in Šostak sense as a weaker version of (r,s)-fuzzy connected.
|
Keywords:
|
Intuitionistic fuzzy topology, (r,s)-fuzzy δ-connected, (r,s)-fuzzy θ-connected
|
References:
|
- S. E. Abbas, (r,s)-generalized intuitionistic fuzzy closed sets, J. Egypt Math. Soc. vol 14(2), 2006, 283-297
- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol 20(1), 1986, 87-96
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., vol 24, 1968, 182-190
- K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems, vol 49, 1992, 237-242
- D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol 88, 1997, 81-89
- D. Çoker and M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Busefal, vol 67, 1996, 67-76
- U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anall. Appl., vol 78, 1980, 659-673
- U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, vol 73, 1995, 131-149
- U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, Dordrecht (Chapter 3), 1999
- T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985
- T. Kubiak and A. P. Šostak, Lower set-valued fuzzy topologies, Questions Math., vol 20(3), 1997, 423-429
- E. P. Le and Y. B. Im, Mated fuzzy topological spaces, J. Korea Fuzzy Logic Intell. Sys. Soc., vol 11(2), 2001, 161-165
- S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, vol 131, 2002, 323-336
- A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II, vol 11, 1985, 89-103
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|