Title of paper:
|
Cartesian composition of intuitionistic fuzzy finite automata with unique membership transition on an input symbol
|
Author(s):
|
A. Jeny Jordon
|
Department of Mathematics, St. Joseph’s College (Autonomous), Tiruchirappalli, Tamil Nadu, India
|
jenyjordon85@gmail.com
|
T. Rajaretnam
|
Department of Mathematics, St. Joseph’s College (Autonomous), Tiruchirappalli, Tamil Nadu, India
|
t_rajaretnam@yahoo.com
|
|
Published in:
|
"Notes on IFS", Volume 23, 2017, Number 5, pages 102—111
|
Download:
|
PDF (176 Kb Kb, File info)
|
Abstract:
|
This paper presents a study on Cartesian composition of two intuitionistic fuzzy finite automata with unique membership transition on an input symbol (IFAUM). The condition for intuitionistic retrievable and intuitionistic connectedness of two IFAUM’s A1 and A2 are analyzed
|
Keywords:
|
Intuitionistic fuzzy finite Automata, Intuitionistic retrievable, Intuitionistic connectedness.
|
AMS Classification:
|
03F55, 03D05, 68Qxx.
|
References:
|
- Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. (1989) More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33(1), 37– 46.
- Atanassov, K. (1989) Intuitionistic fuzzy relations, First Scientific Session of the Mathematical Foundation Artificial Intelligence, Sofia IM-MFAIS, 1–3.
- Atanassov, K. (1994) New operations defined over intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61(2), 137–142.
- Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica- Verlag, Heidelberg.
- Burillo, P. & Bustince, H. (1996) Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems, 79, 403–405.
- Gau, W.L. & Buehrer, D.J. (1993) Vague sets, IEEE Trans Syst ManCybernet, 23, 610–614.
- Holcombe, W. M. L. (1982) Algebraic Automata Theory, Cambridge University Press.
- Jeny Jordon, A., Jency Priya, K., Telesphore Lakra & Rajaretnam, T.(2014) Recognizability of Intuitionistic Fuzzy Finite Automata – Homomorphic Images, 2014 World Congress on Computing and Communication Technologies(WCCCT 2014), 978-1-4799-2876-7/14. 2014 IEEE, DOI 10.1109/WCCCT. 2014.56.
- Jun, Y. B. (2005) Intuitionistic fuzzy finite state machines, Journal of Applied Mathematics and Computing, 17, 109–120.
- Jun, Y. B. (2007) Quotient structures of intuitionistic fuzzy finite state machines, Information Sciences, 177 , 4977–4986.
- Lee, E. T. & Zadeh, L. A. (1969) Note an fuzzy languages, Infom. Sci, 1, 421–434.
- Malik, D. S. & Mordeson, J. N. (2002) Fuzzy Automata and languages, theory and applications, CRC.
- Rajaretnam, T. & Ayyaswamy, S. (2009) Fuzzy finite State Automaton with Unique Membership transition on an input Symbol, The journal of Combinatorial Mathematics and Combinatorial Computing, 69, 151–164.
- Santos, E. S. (1968) Maximum automata, Inform Control, 12, 367–377.
- Telesphore, L., Jeny Jordon, A., Jency Priya, K. & Rajaretnam, T. (2014) Intuitionistic Fuzzy Finite Automata with Unique Membership Transitions, 2014 World Congress on Computing and Communication Technologies(WCCCT 2014), 978-1-4799-2876-7/14. 2014 IEEE, DOI 10.1109/WCCCT. 2014.54.
- Wee, W. G. & Fu, K. S. (1969) A formulation of fuzzy automata and its applications as a model of Learning systems, IEEE Trans. on Systems Science and Cybernetics, 215–223.
- Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|