Title of paper:
|
On intuitionistic fuzzy hyperstructure with T-norm
|
Author(s):
|
Gökhan Çuvalcioğlu
|
Department of Mathematics, Faculty of Arts and Sciences, Mersin University, Mersin, Turkey
|
gcuvalcioglu@gmail.com
|
Mehmet Çitil
|
Department of Mathematics,, Kahramanmaraş Sütçü İmam University , Turkey
|
citil@ksu.edu.tr
|
Emine Demirbaş
|
Department of Mathematics, Faculty of Arts and Sciences, Mersin University, Mersin, Turkey
|
eminesdemirbas@gmail.com
|
|
Presented at:
|
21st International Conference on Intuitionistic Fuzzy Sets, 22–23 May 2017, Burgas, Bulgaria
|
Published in:
|
"Notes on IFS", Volume 23, 2017, Number 2, pages 24—31
|
Download:
|
PDF (157 Kb Kb, File info)
|
Abstract:
|
In this paper, we redefine T-intuitionistic fuzzy Hν-subring of R and investigate some related properties. Some fundamental relation properties are studied.
|
Keywords:
|
Hν-rings, Fuzzy Hν-group, Fundamental definition of Hν-group, Intuitionistic fuzzy Hν-ideal, T-norm
|
AMS Classification:
|
Primary 05C38, 15A15; Secondary 05A15, 15A18.
|
References:
|
- Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets, Theory and Applications, Spinger, Heidelberg.
- Davvaz, B. (1999). Fuzzy Hν-groups, Fuzzy Sets and Systems, 101, 191–195.
- Davvaz, B. (1998). On Hν-rings and fuzzy Hν-ideals. Journal of Fuzzy Mathematics (1998), 6, 33–42.
- Davvaz, B., & Dudek, W. A. (2006). Intuitionistic fuzzy Hν-ideals, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 65921, 11 pages.
- Davvaz, B. (2001). Fuzzy Hν-submodules, Fuzzy Sets and Systems, 117, 477–484.
- Davvaz, B., Dudek,W.A., & Jun, Y. B. (2005). On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Information Sciences, 170, 251–262.
- Davvaz, B. (2003). T-fuzzy Hν-subrings of an Hν-ring, The Journal of Fuzzy Mathematics, 11, 215–224.
- Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms, Kluwer Academic Publishers, Dordrecht.
- Lee, J. G., & Kim, K. H. (2010). On fuzzy subhypernear-rings of hypernear-rings with t-norms, Journal of the Chungcheong Mathematical Society, 23(2), 237–243.
- Marty, F. (1934). Sur une generalization de la notion de groupe, Congres Math. Skandinaves, Stockholm, 45–49.
- Spartalis, S., & Vougiouklis, T. (1994). The fundamental relations of Hν-rings, Riv. Mat. Pura Apply. 14, 7–20.
- Vougiouklis, T. (1999). On Hν-ring and Hν-representations, Discrete Math., 208/209, 615–620.
- Vougiouklis, T. (1990). The Fundamental relation in hyperrings. The general hyperfield, in Algebraic Hyperstructures and Applications, World Sci. Pulb., Teaneck, NJ, pp. 203–211.
- Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|