As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:D-posets and effect algebras

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 17:13, 28 August 2024 by Vassia Atanassova (talk | contribs) (Text replacement - ""Notes on IFS", Volume " to ""Notes on Intuitionistic Fuzzy Sets", Volume ")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

[Category:Publications on intuitionistic fuzzy sets|D-posets and effect algebras]]

shortcut
http://ifigenia.org/wiki/issue:nifs/20/4/32-40
Title of paper: D-posets and effect algebras
Author(s):
Martina Paulínyová
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 20, 2014, Number 4, pages 32–40
Download:  PDF (105  Kb, File info)
Abstract: In the paper two algebraizations of IF-sets families are considered: D-posets [11] and effect algebras [5]. An elementary proof is presented of the fact that D-posets and effect algebras are isomorphic structures [12, 13]. Moreover a product is defined on effect algebras and it is proved that the corresponding algebraic structure is equivalent with the Kôpka D-poset [15, 16].
Keywords: D-poset, Effect algebra, Multiplicative operation.
AMS Classification: 03G12, 03B5D
References:
  1. Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
  2. Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  3. Atanassov, K., On a new algebraic object. Third scientific session of the mathematical foundations artificial intelligence seminar, Part 1, Sofia 1990, 1–5.
  4. Foulis, J. D., Algebraic measure theory. Atti Sem. Mat. Fis. Univ. Modena, Vol. 48, 2000, 435–461.
  5. Foulis, D. J., M. K. Bennett, Effect algebras and unsharp quantum logics. Found. Phys., Vol. 24, 1994, 1331–1352.
  6. Frič, R., M. Papčo, On probability domains. Internat. J. Theoret. Phys., Vol. 49, 2010, 3092–3100.
  7. Frič, R., M. Papčo, On probability domains II. Internat. J. Theoret. Phys., Vol. 50, 2011, 3778–3786.
  8. Frič, R., M. Papčo, On probability domains III. Internat. J. Theoret. Phys. (submitted)
  9. Chovanec, F., Difference Posets and their Graphical Representation (in Slovak). Liptovský Mikuláš, 2014.
  10. Chovanec, F., E. Drobná, On a construction of linearly ordered totaly nonatomic D-posets. Proc. Third Seminar Fuzzy sets and Quantum Structures, 2003, 12–27.
  11. Chovanec, F., F. Kôpka, D-posets. Math. Slovaca, Vol. 44, 1994, 21–34.
  12. Chovanec, F., F. Kôpka, D-posets. In: Integral, Measure, and Ordering (B. Riečan and T. Neubrunn), Kluwer, 1997, 278–311.
  13. Kôpka, F., F. Chovanec, D-posets. In: Handbook of Quantum Logic and Quantum Structures, Elsevier, Amsterdam, 2007, 367–428.
  14. Dvurečenskij A., M. Kuková, Observables on quantum structures. Information Sciences, 2013.
  15. Dvurečenskij A., S. Pulmannová, New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.
  16. Kôpka, F., D-posets with meet function. Tatra Mt. Math. Publ., Vol. 1, 1992, 83–87.
  17. Kôpka, F., Quasi product on Boolean D-posets. Inter. J. Theor. Phys., Vol. 47, 2008, 26–35.
  18. Kôpka, F., F. Chovanec, D-posets. Math. Slovaca, Vol. 44, 1994, 21–34.
  19. Kuková, M., Strong law of large numbers on the Kôpka D- posets. In: FSTA 2012, 79.
  20. Kuková, M., M. Navara, Central limit theorem and laws of large numbers in quantum structures. In: 11th Bienal IQSA Meeting, Cagliari 2012, 44–45.
  21. Montagna, F., An algebraic approach to propositional fuzzy logic. J. Logic. Lang. Inf., Special Issue on Logics of Uncertainty (Mundici, D. ed.), Vol. 9, 2000, 91–124.
  22. Papčo, M., On effect algebras. Soft Computing, Vol. 12, 2007, 26–35.
  23. Riečan, B., On the product MV-algebras. Tatra Mt. Math. Publ., Vol. 16, 1999, 299–306.
  24. Riečan, B., On a new approach to probablity theory on MV algebras, Proc. of Workshop on Generalized Nets, Intutionistic Fuzzy Sets and Knowledge Engeneerng, London, 2010, 57–65.
  25. Riečan, B., Analysis of Fuzzy Logic Models. In: Intelligent Systems (V. M. Koleshko ed.),INTECH 2012, 219–240.
  26. Riečan, B., Embedding of IF-states to MV-algebras. Proc. of IWIFSGN, Warsawa, 2014.(in press)
  27. Riečan, B., L. Lašová, On the probability on the Kôpka D-posets. In: Developments in Fuzzy Sets, Intuitionistic Fuzzy sets, Generalized Nets and Related Topics. Vol. I (K. Atanassov et al. eds.), Warsaw, 2010, 167–176.
  28. Riečan, B., D. Mundici, Probability on MV-algebras. In: Handbook of Measure Theory, Elsevier, Amsterdam, 2002, 869–910.
  29. Samuelčík, K., I. Hollá, Conditional probability on the Kôpka D-posets. Acta Mathematica Sinica, Vol. 28, 2012, 2197–2204.
  30. Samuelčík, K., I. Hollá, Disjointness relations on D-posets. Proc. of 2nd InternationalWorkshop on Generalized Nets, Intuitionistic Fuzzy Sets and Knowledge Engineering, July 2010,London, 71–74.
  31. Skřivánek, V., R. Frič, R.: Generalized random events (submitted).
  32. Vrábelová, M., On the conditional probability in product MV-algebras. Soft Computing, Vol. 4, 2000, 58–61.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.