Title of paper:
|
About the Lp space of intuitionistic fuzzy observables
|
Author(s):
|
Katarína Čunderlíková
|
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
|
cunderlikova.lendelova@gmail.com
|
|
Presented at:
|
26th International Conference on Intuitionistic Fuzzy Sets, Sofia, 26—27 June 2023
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 2, pages 90–98
|
DOI:
|
https://doi.org/10.7546/nifs.2023.29.2.90-98
|
Download:
|
PDF (220 Kb, File info)
|
Abstract:
|
The aim of this paper is to define an $L^p$ space of intuitionistic fuzzy observables. We~work in an intuitionistic fuzzy space $({\mathcal F}, {\bf m})$ with product, where $\mathcal F$ is a family of intuitionistic fuzzy events and ${\bf m}$ is an intuitionistic fuzzy state. We prove that the space $L^p$ with corresponding intuitionistic fuzzy pseudometric $\rho_{IF}$ is a pseudometric space.
|
Keywords:
|
Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Joint intuitionistic fuzzy observable, Function of several intuitionistic fuzzy observables, Product, Lp space, Pseudometric space, Intuitionistic fuzzy pseudometric.
|
AMS Classification:
|
03B52, 60A86.
|
References:
|
- Atanassov, K. T. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York.
- Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets, Springer, Berlin.
- Bartková, R., & Čunderlíková, K. (2018). About Fisher–Tippett–Gnedenko Theorem for Intuitionistic Fuzzy Events. In: Kacprzyk, J., et al. (eds) Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 641, Springer, Cham, 125–135.
- Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29–40.
- Lendelová, K. (2006). Conditional IF-probability. Lawry, J. et al. (Eds.). Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, Vol. 37, Springer-Verlag Berlag Heidelberg, 275–283.
- Riečan, B. (1999). On the $L^p$ space of observables. Fuzzy Sets and Systems, 105(2), 299–306.
- Riečan, B. (2000). On the $L^p$ space of observables on product MV algebras. International Journal of Theoretical Physics, 39(3), 851–858.
- Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 157(11), 1485–1490.
- Riečan, B. (2006). On the probability and random variables on IF events. In: Ruan, D. et al. (Eds.). Applied Artificial Intelligence, Proceedings of the 7th FLINS Conference, Genova, 138–145.
- Riečan, B. (2007). Probability theory on intuitionistic fuzzy events. In: Aguzzoli, D. et al. (eds) A volume in honour of Daniele Mundici’s 60th birthday. Lecture Notes in Computer Science, Springer, 290–308.
- Riečan, B. (2012). Analysis of fuzzy logic models. In: Koleshko, V. (Ed.). Intelligent Systems, INTECH, 219–244.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|