As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On intuitionistic fuzzy hyperstructure with T-norm: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "On intuitionistic fuzzy hyperstructure with T-norm In this paper, we redefine T-intuitionistic fuzzy H<sub>ν</sub>-subring of R and investigate some related properties. So..."
 
mNo edit summary
Line 1: Line 1:
On intuitionistic fuzzy hyperstructure with T-norm
In this paper, we redefine T-intuitionistic fuzzy H<sub>&nu;</sub>-subring of R and investigate some related properties. Some fundamental relation properties are studied.
[[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]]
[[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]]
[[Category:Publications in Notes on IFS|{{PAGENAME}}]]
[[Category:Publications in Notes on IFS|{{PAGENAME}}]]

Revision as of 18:59, 24 December 2017

shortcut
http://ifigenia.org/wiki/issue:nifs/23/2/24-31
Title of paper: On intuitionistic fuzzy hyperstructure with T-norm
Author(s):
Gökhan Çuvalcioğlu
Department of Mathematics, Faculty of Arts and Sciences, Mersin University, Mersin, Turkey
gcuvalcioglu@gmail.com
Mehmet Çitil
Department of Mathematics,, Kahramanmaraş Sütçü İmam University , Turkey
citil@ksu.edu.tr
Emine Demirbaş
Department of Mathematics, Faculty of Arts and Sciences, Mersin University, Mersin, Turkey
eminesdemirbas@gmail.com
Presented at: 21st International Conference on Intuitionistic Fuzzy Sets, 22–23 May 2017, Burgas, Bulgaria
Published in: "Notes on IFS", Volume 23, 2017, Number 2, pages 24—31
Download:  PDF (157 Kb  Kb, File info)
Abstract: In this paper, we redefine T-intuitionistic fuzzy Hν-subring of R and investigate some related properties. Some fundamental relation properties are studied.
Keywords: Hν-rings, Fuzzy Hν-group, Fundamental definition of Hν-group, Intuitionistic fuzzy Hν-ideal, T-norm
AMS Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18.
References:
  1. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets, Theory and Applications, Spinger, Heidelberg.
  3. Davvaz, B. (1999). Fuzzy Hν-groups, Fuzzy Sets and Systems, 101, 191–195.
  4. Davvaz, B. (1998). On Hν-rings and fuzzy Hν-ideals. Journal of Fuzzy Mathematics (1998), 6, 33–42.
  5. Davvaz, B., & Dudek, W. A. (2006). Intuitionistic fuzzy Hν-ideals, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 65921, 11 pages.
  6. Davvaz, B. (2001). Fuzzy Hν-submodules, Fuzzy Sets and Systems, 117, 477–484.
  7. Davvaz, B., Dudek,W.A., & Jun, Y. B. (2005). On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Information Sciences, 170, 251–262.
  8. Davvaz, B. (2003). T-fuzzy Hν-subrings of an Hν-ring, The Journal of Fuzzy Mathematics, 11, 215–224.
  9. Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms, Kluwer Academic Publishers, Dordrecht.
  10. Lee, J. G., & Kim, K. H. (2010). On fuzzy subhypernear-rings of hypernear-rings with t-norms, Journal of the Chungcheong Mathematical Society, 23(2), 237–243.
  11. Marty, F. (1934). Sur une generalization de la notion de groupe, Congres Math. Skandinaves, Stockholm, 45–49.
  12. Spartalis, S., & Vougiouklis, T. (1994). The fundamental relations of Hν-rings, Riv. Mat. Pura Apply. 14, 7–20.
  13. Vougiouklis, T. (1999). On Hν-ring and Hν-representations, Discrete Math., 208/209, 615–620.
  14. Vougiouklis, T. (1990). The Fundamental relation in hyperrings. The general hyperfield, in Algebraic Hyperstructures and Applications, World Sci. Pulb., Teaneck, NJ, pp. 203–211.
  15. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.