As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
add link
m {{stub}}
Line 2: Line 2:


<div align="center">
<div align="center">
<math>A^* = \lbrace \langle x, \mu_A(x), \nu_A(x) \rangle \ | \ x \in E \rbrace</math>
<math>A = \lbrace \langle x, \mu_A(x), \nu_A(x) \rangle \ | \ x \in E \rbrace</math>
</div>  
</div>  


Line 10: Line 10:
Functions <math>\mu_A: E \to [0,1]</math> and <math>\nu_A: E \to [0,1]</math> represent ''degree of [[membership]] (validity, etc.)'' and  ''[[non-membership]] (non-validity, etc.)''.  
Functions <math>\mu_A: E \to [0,1]</math> and <math>\nu_A: E \to [0,1]</math> represent ''degree of [[membership]] (validity, etc.)'' and  ''[[non-membership]] (non-validity, etc.)''.  


We can define also function <math>\pi_A: E \to [0,1]</math> through
We can define also function <math>\pi_A: E \to [0,1]</math> through <math>\pi(x) = 1 - \mu (x) - \nu (x)</math>
<div align="center"><math>\pi(x) = 1 - \mu (x) - \nu (x)</math></div>
and it corresponds to ''degree of [[indeterminacy]] (uncertainty, etc.)''.  
and it corresponds to ''degree of [[indeterminacy]] (uncertainty, etc.)''.  
For brevity, we shall write below <math>A</math> instead of <math>A^*</math>, whenever this is possible.


Obviously, for every ordinary [[fuzzy set]] <math>A</math>: <math>\pi_A(x) = 0</math> for each <math>x \in E</math> and these sets have the form <math>\lbrace \langle  x, \mu_{A}(x), 1-\mu_{A}(x)\rangle  |x \in E \rbrace.</math>
Obviously, for every ordinary [[fuzzy set]] <math>A</math>: <math>\pi_A(x) = 0</math> for each <math>x \in E</math> and these sets have the form <math>\lbrace \langle  x, \mu_{A}(x), 1-\mu_{A}(x)\rangle  |x \in E \rbrace.</math>


[[Category:Intuitionistic fuzzy sets]]
[[Category:Intuitionistic fuzzy sets]]
{{stub}}

Revision as of 14:05, 16 October 2008

Let us have a fixed universe [math]\displaystyle{ E }[/math] and its subset [math]\displaystyle{ A }[/math]. The set

[math]\displaystyle{ A = \lbrace \langle x, \mu_A(x), \nu_A(x) \rangle \ | \ x \in E \rbrace }[/math]

where [math]\displaystyle{ 0 \leq \mu_A(x) + \nu_A(x) \leq 1 }[/math] is called intuitionistic fuzzy set.

Functions [math]\displaystyle{ \mu_A: E \to [0,1] }[/math] and [math]\displaystyle{ \nu_A: E \to [0,1] }[/math] represent degree of membership (validity, etc.) and non-membership (non-validity, etc.).

We can define also function [math]\displaystyle{ \pi_A: E \to [0,1] }[/math] through [math]\displaystyle{ \pi(x) = 1 - \mu (x) - \nu (x) }[/math] and it corresponds to degree of indeterminacy (uncertainty, etc.).

Obviously, for every ordinary fuzzy set [math]\displaystyle{ A }[/math]: [math]\displaystyle{ \pi_A(x) = 0 }[/math] for each [math]\displaystyle{ x \in E }[/math] and these sets have the form [math]\displaystyle{ \lbrace \langle x, \mu_{A}(x), 1-\mu_{A}(x)\rangle |x \in E \rbrace. }[/math]

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.