Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.
Deadline for submissions: 16 November 2024.
Transition: Difference between revisions
Jump to navigation
Jump to search
(New page: right|thumb|200px|A GN transition with ''m'' inputs and ''n'' outputs '''Transition''' in the context of generalized nets is an object from the static s...) |
|||
Line 14: | Line 14: | ||
* <math>t_2</math> is the current value of the duration of its active state. | * <math>t_2</math> is the current value of the duration of its active state. | ||
* <math>r</math> is the transition's ''condition'', determining which tokens will transfer from the transition's inputs to its outputs. The parameter has the form of an [[index matrix]]: | * <math>r</math> is the transition's ''condition'', determining which tokens will transfer from the transition's inputs to its outputs. The parameter has the form of an [[index matrix]]: | ||
*: <math> r = | |||
<math> r = | |||
\begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ | \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ | ||
\hline | \hline | ||
Line 25: | Line 24: | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
*: where <math>r_{i,j}</math> are predicates, <math>1 \le i \le m, 1 \le j \le n</math> | |||
: where <math>r_{i,j}</math> are predicates, <math>1 \le i \le m, 1 \le j \le n</math> | |||
* <math>M</math> is the index matrix of the capacities of the transition's arcs: | * <math>M</math> is the index matrix of the capacities of the transition's arcs: | ||
*: <math> M = | |||
<math> M = | |||
\begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ | \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ | ||
\hline | \hline | ||
Line 40: | Line 36: | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
*: where <math>M_{i,j} \ge 0</math> are natural numbers or <math>\infty</math>, <math>1 \le i \le m, 1 \le j \le n</math> | |||
: where <math>M_{i,j} \ge 0</math> are natural numbers or <math>\infty</math>, <math>1 \le i \le m, 1 \le j \le n</math> | |||
* <math>\Box</math> is called transition's type, an object having a form similar to a Boolean expression. It may contain as variables the symbols that serve as labels for transition's input places, and it is an expression constructed of variables and the Boolean connectives <math>\land</math> and <math>\lor</math> determining the following conditions: | * <math>\Box</math> is called transition's type, an object having a form similar to a Boolean expression. It may contain as variables the symbols that serve as labels for transition's input places, and it is an expression constructed of variables and the Boolean connectives <math>\land</math> and <math>\lor</math> determining the following conditions: | ||
*: <math>\land(l_{i_1}, l_{i_2},...,l_{i_u})</math> - each of the places <math>l_{i_1}, l_{i_2},...,l_{i_u}</math> must contain at least one token, | *: <math>\land(l_{i_1}, l_{i_2},...,l_{i_u})</math> - each of the places <math>l_{i_1}, l_{i_2},...,l_{i_u}</math> must contain at least one token, |
Revision as of 17:09, 18 April 2009
Transition in the context of generalized nets is an object from the static structure of the net, which comprises the conditions of tokens' transfer from the transition's input places to its output places.
When tokens enter the input place of a transition, it becomes potentially fireable and at the moment of their transfer towards the transition's output places, the transition is being fired.
Formal description
Formally, every transition is described by a 7-tuple:
[math]\displaystyle{ Z = \langle L', L'', t_1, t_2, r, M, \Box \rangle }[/math]
where:
- [math]\displaystyle{ L', L'' }[/math] are finite, non-empty sets of places: the transition's input and output places, respectively.
- [math]\displaystyle{ t_1 }[/math] is the current time-moment of the transition's firing.
- [math]\displaystyle{ t_2 }[/math] is the current value of the duration of its active state.
- [math]\displaystyle{ r }[/math] is the transition's condition, determining which tokens will transfer from the transition's inputs to its outputs. The parameter has the form of an index matrix:
- [math]\displaystyle{ r = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & r_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
- where [math]\displaystyle{ r_{i,j} }[/math] are predicates, [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
- [math]\displaystyle{ M }[/math] is the index matrix of the capacities of the transition's arcs:
- [math]\displaystyle{ M = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & M_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
- where [math]\displaystyle{ M_{i,j} \ge 0 }[/math] are natural numbers or [math]\displaystyle{ \infty }[/math], [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
- [math]\displaystyle{ \Box }[/math] is called transition's type, an object having a form similar to a Boolean expression. It may contain as variables the symbols that serve as labels for transition's input places, and it is an expression constructed of variables and the Boolean connectives [math]\displaystyle{ \land }[/math] and [math]\displaystyle{ \lor }[/math] determining the following conditions:
- [math]\displaystyle{ \land(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - each of the places [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] must contain at least one token,
- [math]\displaystyle{ \lor(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - there must be at least one token in the set of places [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] where [math]\displaystyle{ \lbrace l_{i_1}, l_{i_2},...,l_{i_u} \rbrace \subset L' }[/math]
- When the value of a type (calculated as a Boolean expression) is "true", the transition can become active, otherwise it cannot.
References
- On Generalized Nets Theory, Krassimir Atanassov, Prof. Marin Drinov Academic Publishing House, Sofia, 2007