Title of paper:
|
Intuitionistic fuzzy α-semigroup
|
Author(s):
|
Said Melliani
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
|
saidmelliani@gmail.com
|
M. Elomari
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
|
m.elomari@usms.ma
|
Lalla Saadia Chadli
|
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
|
sa.chadli@yahoo.fr
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 24, 2018, Number 3, pages 27—39
|
DOI:
|
https://doi.org/10.7546/nifs.2018.24.3.27-39
|
Download:
|
PDF (194 Kb, File info)
|
Abstract:
|
In this paper we will try to give sense to the notion of intuitionistic fuzzy α-semigroups. Our objective is to solve an intuitionistic fuzzy evolution (differential equation) problem. Since the concept of linear operators is not defined on the set of all intuitionistic fuzzy numbers, we found an obvious inspiration from the nonlinear evolution problem in the classical case.
|
Keywords:
|
Intuitionistic fuzzy α-semigroup, Intuitionistic fuzzy conformable problem, Intuitionistic fuzzy solution, Intuitionistic fuzzy α-accretive operator
|
AMS Classification:
|
03E72, 47H20, 37L05.
|
References:
|
- Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
- Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- Atanassov, K. T., Vassilev, P. M., & Tsvetkov, R. T. (2013) Intuitionistic Fuzzy Sets, Measures and Integrals. Bulgarian Academic Monographs (12), Professor Marin Drinov Academic Publishing House, Sofia.
- Al Horani, M., Roshdi, K., & Thabet, A. (2014) Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014.
- Debreu, G. (1967) Integration of correspondences, in Proc. Fifth Berkeley Syrup. Math. Stat. Probab, 2 (1), 351–372.
- Elomari, M., Melliani, S., Ettoussi, R. & Chadli, L. S. (2015) Intuitionistic fuzzy semigroup, Notes on Intuitionistic Fuzzy Sets, 21 (2), 43–50.
- Kaleva, O. (2012) Nonlinear iteration semigroup of fuzzy Cauchy problems, Fuzzy Sets and Systems, 209, 104–110.
- Kaleva. O. (1990) The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35, 366–389.
- Kaleva, O. (1987) Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301–317.
- Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21 (1), 43–53.
- Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag.
- Puri, M. L. & Ralescu, D. A. (1983) Differentials for fuzzy functions, J. Math. Anal. Appl., 91, 552–558.
- Radstrom, H. (1952) An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3, 165–169.
- Roshdi, K., Al Horani, M., Yousef, A., & Sababheh, M. (2014) A new Definition Of Fractional Derivative, J. Comput. Appl. Math., 264, 65–70.
- Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|