Title of paper:
|
Intuitionistic fuzzy superfluous submodule
|
Author(s):
|
Poonam Kumar Sharma
|
Post Graduate, Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
Gagandeep Kaur
|
Research scholar, I. K. Gujral Punjab Technical University, Jalandhar, Punjab, India
|
talktogagandeep@gmail.com
|
|
Presented at:
|
20th International Conference on Intuitionistic Fuzzy Sets, 2–3 September 2016, Sofia, Bulgaria
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 3, pages 34—46
|
Download:
|
PDF (132 Kb, File info)
|
Abstract:
|
In this paper, we introduce the notion of intuitionistic fuzzy superfluous (or small) submodule of a module and study some of their properties. We establish the condition of an intuitionistic
fuzzy submodule to be an intuitionistic fuzzy superfluous submodule. A relationship between superfluous submodule and the intuitionistic fuzzy superfluous submodule is derived. We also study the nature of intuitionistic fuzzy superfluous submodules under intuitionistic fuzzy direct sum. A relation regarding intuitionistic fuzzy superfluous submodule and intuitionistic fuzzy quotient module is established. It is shown that the well-known relation between the Jacobson radical and the superfluous submodules does not hold in case of intuitionistic fuzzy superfluous submodules.
|
Keywords:
|
Intuitionistic fuzzy superfluous submodules, Intuitionistic fuzzy indecomposable modules, Intuitionistic fuzzy direct sum, Intuitionistic fuzzy radical.
|
AMS Classification:
|
03F55, 16D10.
|
References:
|
- Anderson, F. W. & Fuller K. R. (1992) Rings and Categories of Modules, Second edition, Springer Verlag.
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1994) New operation defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
- Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Series Studies on Fuzziness and Soft Computing, Vol. 35, Springer Physica-Verlag, Heidelberg.
- Basnet, D. K., Sarma, N. K., & Singh, L. B. (2010) Fuzzy Superfluous Submodule, Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010), 3–4 November, 2010, Kualalumpur, Malaysia., 330–335.
- Basnet, D. K. (2011) Topics in Intuitionistic Fuzzy Algebra, Lambert Academic Publishing, Germany.
- Biswas, R. (1989) Intuitionistic fuzzy subgroup, Mathematical Forum, X, 37–46.
- Bland Paul, E. (2012) Rings and Their Modules, Deutsche Nationalbibliothek, Germany.
- Goodearl, K. R. (1976) Ring Theory, Marcel Dekker INC, New York and Basel.
- Hur, K., Kang, H. W. & Song, H. K. (2003) Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J., 25(1), 19–41.
- Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
- Isaac, P., & John, P. P. (2011) On Intuitionistic Fuzzy Submodules of a Module, Int. J. of Mathematical Sciences and Applications, 1(3), 1447–1454.
- John, P. P. & Isaac, P. (2012) IFSM’s of an R-Module – A Study, International Mathematical Forum, 19(7), 935–943.
- Negoita, C. V. & Ralescu, D. A. (1975) Applications of Fuzzy Sets and Systems Analysis, Birkhauser, Basel.
- Rahman, S. & Saikia, H. K. (2012) Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369–383.
- Rosenfeld, A. (1971) Fuzzy group, J. Math. Anal. and Appl., 35, 512–517.
- Sharma, P. K. & Kaur, T. (2015) Intuitionistic fuzzy G-modules, Notes on Intuitionistic Fuzzy Sets, 21(1), 6–23.
- Sharma, P. K. (2013) (α,β)-Cut of intuitionistic fuzzy modules–II, Int. J. of Mathematical Sciences and Applications, 3(1), 11–17.
- Sharma, P. K. (2011) (α,β)-Cut of intuitionistic fuzzy modules Int. J. of Mathematical Sciences and Applications, 3(1), 1489–1492.
- Sharma, P. K. Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, Annals of Fuzzy Mathematics and Informatics (accepted).
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control., 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|