As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy α-semigroup: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
doi
- conference =
Line 28: Line 28:
}}
}}
{{issue/data
{{issue/data
| conference      =  International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/24/3|"Notes on IFS", Volume 24, 2018, Number 3]], pages 27—39
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/24/3|"Notes on IFS", Volume 24, 2018, Number 3]], pages 27—39
  | file            = NIFS-24-3-027-039.pdf
  | file            = NIFS-24-3-027-039.pdf

Revision as of 18:44, 1 November 2018

shortcut
http://ifigenia.org/wiki/issue:nifs/24/3/27-39
Title of paper: Intuitionistic fuzzy α-semigroup
Author(s):
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
saidmelliani@gmail.com
M. Elomari
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
m.elomari@usms.ma
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
sa.chadli@yahoo.fr
Published in: "Notes on IFS", Volume 24, 2018, Number 3, pages 27—39
DOI: https://doi.org/10.7546/nifs.2018.24.3.27-39
Download:  PDF (194  Kb, File info)
Abstract: In this paper we will try to give sense to the notion of intuitionistic fuzzy α-semigroups. Our objective is to solve an intuitionistic fuzzy evolution (differential equation) problem. Since the concept of linear operators is not defined on the set of all intuitionistic fuzzy numbers, we found an obvious inspiration from the nonlinear evolution problem in the classical case.
Keywords: Intuitionistic fuzzy α-semigroup, Intuitionistic fuzzy conformable problem, Intuitionistic fuzzy solution, Intuitionistic fuzzy α-accretive operator
AMS Classification: 03E72, 47H20, 37L05.
References:
  1. Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  3. Atanassov, K. T., Vassilev, P. M., & Tsvetkov, R. T. (2013) Intuitionistic Fuzzy Sets, Measures and Integrals. Bulgarian Academic Monographs (12), Professor Marin Drinov Academic Publishing House, Sofia.
  4. Al Horani, M., Roshdi, K., & Thabet, A. (2014) Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014.
  5. Debreu, G. (1967) Integration of correspondences, in Proc. Fifth Berkeley Syrup. Math. Stat. Probab, 2 (1), 351–372.
  6. Elomari, M., Melliani, S., Ettoussi, R. & Chadli, L. S. (2015) Intuitionistic fuzzy semigroup, Notes on Intuitionistic Fuzzy Sets, 21 (2), 43–50.
  7. Kaleva, O. (2012) Nonlinear iteration semigroup of fuzzy Cauchy problems, Fuzzy Sets and Systems, 209, 104–110.
  8. Kaleva. O. (1990) The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35, 366–389.
  9. Kaleva, O. (1987) Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301–317.
  10. Melliani, S., Elomari, M., Chadli, L. S. & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21 (1), 43–53.
  11. Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag.
  12. Puri, M. L. & Ralescu, D. A. (1983) Differentials for fuzzy functions, J. Math. Anal. Appl., 91, 552–558.
  13. Radstrom, H. (1952) An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3, 165–169.
  14. Roshdi, K., Al Horani, M., Yousef, A., & Sababheh, M. (2014) A new Definition Of Fractional Derivative, J. Comput. Appl. Math., 264, 65–70.
  15. Zadeh, L. A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.