As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Approximations of crisp set and intuitionistic fuzzy set based on intuitionistic fuzzy normal subgroup: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with " {{PAGENAME}} {{PAGENAME}} {{PAGENAME}}..."
 
m Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume"
 
(2 intermediate revisions by 2 users not shown)
Line 22: Line 22:
}}
}}
{{issue/data
{{issue/data
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/23/4|"Notes on IFS", Volume 23, 2017, Number 4]], pages 91—105
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/23/4|"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 4]], pages 91—105
  | file            = NIFS-23-4-91-105.pdf
  | file            = NIFS-23-4-91-105.pdf
  | format          = PDF
  | format          = PDF
  | size            = 157 Kb
  | size            = 157 Kb
  | abstract        = We consider a group <em>G</em>, with identity element <em>e</em>, as a universal set and assume that the knowledge about objects is restricted by an intuitionistic fuzzy normal subgroup <math>A=(\mu_A,\nu_A)</math> of G. For each α, β ∈ [0, 1] such that α + β ≤ 1, the set <math>U (A, \alpha, \beta) = U (\mu_A , \alpha) \cap U (\nu_A, \beta)</math> is a congruence relation on G, where <math>U (\mu_A , \alpha) = \{ (x,y) \in G \times G: \mu_A(xy^{-1} \geq \alpha \} and U (\nu_A , \beta) = \{ (x,y) \in G \times G: \nu_A(xy^{-1} \leq \beta \} </math>. In this paper, the notion of U (A, α, β)-lower and U (A, α, β)-upper approximation of a non-empty subset of G and an intuitionistic fuzzy set of G are introduced and some important properties of the above approximations are presented.
  | abstract        = We consider a group <em>G</em>, with identity element <em>e</em>, as a universal set and assume that the knowledge about objects is restricted by an intuitionistic fuzzy normal subgroup <math>A=(\mu_A,\nu_A)</math> of G. For each α, β ∈ [0, 1] such that α + β ≤ 1, the set <math>U (A, \alpha, \beta) = U (\mu_A , \alpha) \cap U (\nu_A, \beta)</math> is a congruence relation on G, where <math>U (\mu_A , \alpha) = \{ (x,y) \in G \times G: \mu_A(xy^{-1}) \geq \alpha \} </math> and <math>U (\nu_A , \beta) = \{ (x,y) \in G \times G: \nu_A(xy^{-1}) \leq \beta \} </math>. In this paper, the notion of U (A, α, β)-lower and U (A, α, β)-upper approximation of a non-empty subset of G and an intuitionistic fuzzy set of G are introduced and some important properties of the above approximations are presented.
  | keywords        = Rough set, Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy normal subgroup, Congruence relation, Lower and Upper approximations of crisp and fuzzy sets.
  | keywords        = Rough set, Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy normal subgroup, Congruence relation, Lower and Upper approximations of crisp and fuzzy sets.
  | ams            = 03E72, 06F35, 08A72, 03E99.
  | ams            = 03E72, 06F35, 08A72, 03E99.
Line 32: Line 32:
# Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
# Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
# Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
# Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
# Atanassova, L. (2007). Fuzzy version of L. Zadeh’s extension principle, Notes on Intuitionistic Fuzzy Sets, 13(3), 33–36.
# Atanassova, L. (2007). [[Issue:On intuitionistic fuzzy versions of L. Zadeh's extension principle|On intuitionistic fuzzy versions of L. Zadeh's extension principle]], Notes on Intuitionistic Fuzzy Sets, 13(3), 33–36.
# Banerjee, B., & Basnet Kr. D. (2003). Intuitionistic fuzzy subrings and ideals, The Journal of fuzzy mathematics, 11(1), 139–155.
# Banerjee, B., & Basnet Kr. D. (2003). Intuitionistic fuzzy subrings and ideals, The Journal of fuzzy mathematics, 11(1), 139–155.
# Biswas, R., Nanda, S. (1994). Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math., 42, 251–254.
# Biswas, R., Nanda, S. (1994). Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math., 42, 251–254.

Latest revision as of 17:24, 28 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/23/4/91-105
Title of paper: Approximations of crisp set and intuitionistic fuzzy set based on intuitionistic fuzzy normal subgroup
Author(s):
Prasenjit Mandal
Bhalukdungri Jr High School, Raigara, Purulia (W.B.), 723153, India
prasenjitmandal08@yahoo.com
A. S. Ranadive
Department of Pure and Applied Mathematics, Guru Ghasidas University, Bilaspur (C.G.), India
asranadive04@yahoo.co.in
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 4, pages 91—105
Download:  PDF (157 Kb  Kb, File info)
Abstract: We consider a group G, with identity element e, as a universal set and assume that the knowledge about objects is restricted by an intuitionistic fuzzy normal subgroup [math]\displaystyle{ A=(\mu_A,\nu_A) }[/math] of G. For each α, β ∈ [0, 1] such that α + β ≤ 1, the set [math]\displaystyle{ U (A, \alpha, \beta) = U (\mu_A , \alpha) \cap U (\nu_A, \beta) }[/math] is a congruence relation on G, where [math]\displaystyle{ U (\mu_A , \alpha) = \{ (x,y) \in G \times G: \mu_A(xy^{-1}) \geq \alpha \} }[/math] and [math]\displaystyle{ U (\nu_A , \beta) = \{ (x,y) \in G \times G: \nu_A(xy^{-1}) \leq \beta \} }[/math]. In this paper, the notion of U (A, α, β)-lower and U (A, α, β)-upper approximation of a non-empty subset of G and an intuitionistic fuzzy set of G are introduced and some important properties of the above approximations are presented.
Keywords: Rough set, Fuzzy set, Intuitionistic fuzzy set, Intuitionistic fuzzy normal subgroup, Congruence relation, Lower and Upper approximations of crisp and fuzzy sets.
AMS Classification: 03E72, 06F35, 08A72, 03E99.
References:
  1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  2. Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137–142.
  3. Atanassova, L. (2007). On intuitionistic fuzzy versions of L. Zadeh's extension principle, Notes on Intuitionistic Fuzzy Sets, 13(3), 33–36.
  4. Banerjee, B., & Basnet Kr. D. (2003). Intuitionistic fuzzy subrings and ideals, The Journal of fuzzy mathematics, 11(1), 139–155.
  5. Biswas, R., Nanda, S. (1994). Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math., 42, 251–254.
  6. Davvaz, B. (2004). Roughness in rings, Information Sciences, 164, 147–163.
  7. Davvaz, B., Dudak, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy HV-submodules, Information Sciences, 176, 285–300.
  8. Davvaz, B., (2006). Roughness based on fuzzy ideals, Information Sciences, 176, 2417–2437.
  9. Davvaz, B., & Mahdavipour, M. (2006). Roughness in modules, Information Sciences, 176,3658–3674.
  10. Dubois, D., & Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17(2 3), 191–209.
  11. Estaji, A. A., Khodaii, S., & Bahrami, S. (2011). On rough set and fuzzy sublattice, Information Sciences, 181, 3981–3994
  12. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings, Honam Mathematical Journal, 25, 19–41.
  13. Kuroki, N., & Wang, P. P. (1996). The lower and upper approximations in a fuzzy group, Information Sciences, 90, 203–220.
  14. Kuroki, N., & Mordeson, J. N. (1997). Structure of rough sets and rough groups, The Journal of fuzzy mathematics, 5(1), 183–191.
  15. Kuroki, N. (1997). Rough ideals in semigroups, Information Sciences, 100, 139–163.
  16. Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences, 11, 341–356.
  17. Xiao, Q. M., & Zhang, Z. L. (2008). Rough prime ideals and rough fuzzy prime ideals in semigroups, Information Sciences, 178, 425–438.
  18. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.