Title of paper:
|
Water cycle algorithm augmentation with fuzzy and intuitionistic fuzzy dynamic adaptation of parameters
|
Author(s):
|
Oscar Castillo
|
Tijuana Institute of Technology, Tijuana, Mexico
|
ocastillo@tectijuana.mx
|
Eduardo Ramirez
|
Tijuana Institute of Technology, Tijuana, Mexico
|
|
Olympia Roeva
|
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev bl 105, 1113, Sofia, Bulgaria
|
olympia@biomed.bas.bg
|
|
Presented at:
|
4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 3–7 May 2017, Mersin, Turkey
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 1, pages 79—94
|
Download:
|
PDF (157 Kb Kb, File info)
|
Abstract:
|
The paper describes the enhancement of the Water Cycle Algorithm (WCA) using a fuzzy inference system to dynamically adapt its parameters. The idea of intuitionistic fuzzy systems for WCA parameter adaptation is discussed, too. The original WCA is compared in terms
of performance with the proposed method called Water Cycle Algorithm with Dynamic Parameter Adaptation (WCA-DPA). Simulation results on a set of well-known test functions show that the WCA can be improved with a fuzzy dynamic adaptation of the parameters.
|
Keywords:
|
Water cycle algorithm, Optimization, Fuzzy logic, Intuitionistic fuzzy logic.
|
AMS Classification:
|
03E72.
|
References:
|
- Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy Set and Systems, 20(1), 87–96.
- Atanassov, K. (1983). Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983, Reprinted: Int. J. Bioautomation, 20(S1), 2016, S1–S6.
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
- Atanassov, K., Vassilev, P., & Tsvetkov, R. (2013). Intuitionistic Fuzzy Sets, Measures and Integrals. Academic Publishing House "Prof. Marin Drinov", Sofia.
- Atanassov, K. (1988). Review and new results on intuitionistic fuzzy sets, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-1-88. Reprinted: Int. J. Bioautomation, 20(S1), 2016, S7–S16.
- Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, CEC’2007, 4661–4667.
- Eskandar, H. et al. (2012). Water Cycle Algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct., 110/111, 151–166.
- Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- Hosseini, H. S. (2007). Problem solving by intelligent water drops. IEEE Congress on Evolutionary Computation, CEC’2007, 3226–3231.
- Janson, S., & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man, Cybern. Part B. 35(6), 1272–1282.
- Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 1942–1948.
- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
- Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Mach. Stud., 7(1), 1–13.
- Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., & Valdez, M. (2013). Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl., 40(8), 3196–3206.
- Mirjalili, S. et al. (2014). Grey Wolf Optimizer. Adv. Eng. Softw., 69, 46–61.
- Perez, J., Valdez, F., Roeva, O. & Castillo, O. (2016). Parameter adaptation of the Bat Algorithm, using type-1, interval type-2 fuzzy logic and intuitionistic fuzzy logic, Notes on Intuitionistic Fuzzy Sets, 22(2), 87–98.
- Roeva, O., & Michalíková, A. (2013). Generalized net model of intuitionistic fuzzy logic control of genetic algorithm parameters, Notes on Intuitionistic Fuzzy Sets, 19(2), 71–76.
- Roeva, O., & Michalíková, A. (2014). Intuitionistic fuzzy logic control of metaheuristic algorithms' parameters via a Generalized net, Notes on Intuitionistic Fuzzy Sets, 20(4), 53–58.
- Roeva, O., Perez, J., Valdez, F., & Castillo, O. (2016) InterCriteria analysis of bat algorithm with parameter adaptation using Type-1 and Interval Type-2 fuzzy systems, Notes on Intuitionistic Fuzzy Sets, 22(3), 91–105.
- Sadollah, A. et al. (2015). Water cycle algorithm for solving multi-objective optimization problems. Soft Comput., 19(9), 2587–2603.
- Sadollah, A. et al. (2015). Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft Comput., 30, 58–71.
- Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, 101–106.
- Shreve, R. L. (1967). Infinite topologically random channel networks. J. Geol., 75(2), 178–186.
- Shreve, R. L. (1966). Statistical law of stream numbers. J. Geol., 74(1), 17–37.
- Yang, X.-S. (2013). Flower pollination algorithm for global optimization, Int. Conf. on Unconventional Computing and Natural Computation, UCNC‘2012, Springer, 240–249.
- Zhan, Z. H. et al. (2009). Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern. Part B., 39(6), 1362–1381.
- Zheng, Y.-J. (2015). Water wave optimization: A new nature-inspired metaheuristic. Computers & Operations Research, 55, 1–11.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|