Title of paper:
|
Intuitionistic fuzzy implication →188
|
Author(s):
|
Krassimir Atanassov
|
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
|
krat@bas.bg
|
Eulalia Szmidt
|
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
|
szmidt@ibspan.waw.pl
|
Janusz Kacprzyk
|
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
|
kacprzyk@ibspan.waw.pl
|
|
Presented at:
|
4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 3–7 May 2017, Mersin, Turkey
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 1, pages 6—13
|
Download:
|
PDF (157 Kb Kb, File info)
|
Abstract:
|
In [4], some new intuitionistic fuzzy operations are defined and their properties are studied. On the basis of two of them, a new intuitionistic fuzzy implication is introduced here, numbered as→188 and some of its properties will be studied.
|
Keywords:
|
Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
|
AMS Classification:
|
03E72
|
References:
|
- Atanassov, K. (1988). Two variants of intuitionistic fuzzy propositional calculus, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-5-88. Reprinted: Int J Bioautomation, 2016, 20(S1), S17–S26.
- Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017). Multiplicative type of operations over intuitionistic fuzzy pairs. Proceedings of FQAS’17, London, 21–22 June 2017 (in press).
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017). Intuitionistic fuzzy implication →187. Notes on Intuitionistic Fuzzy Sets, 23(2), 2017 (in press).
- Atanassova, L. (2017). Intuitionistic Fuzzy Implication →189. Notes on Intuitionistic Fuzzy Sets, 23(1), 14–20.
- Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
- Plisko, V. (2009). A survey of propositional realizability logic. The Bulleting of Symbolic Logic, 15(1), 1–42.
- Rose, G. F. (1953). Propositional calculus and realizability. Transactions of the American Mathematical Society, 75, 1–19.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|