As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy logic control of metaheuristic algorithms' parameters via a generalized net: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
No edit summary
m Text replacement - ""Notes on IFS", Volume" to ""Notes on Intuitionistic Fuzzy Sets", Volume"
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]]
[[Category:Publications on intuitionistic fuzzy sets|{{PAGENAME}}]]
[[Category:Publications in Notes on IFS|{{PAGENAME}}]]
[[Category:Publications in Notes on IFS|{{PAGENAME}}]]
[[Category:Publications in 2014 year|{{PAGENAME}}]]
[[Category:Publications in 2014 year|{{PAGENAME}}]]
Line 22: Line 22:
{{issue/data
{{issue/data
  | conference      =  
  | conference      =  
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/20/4|"Notes on IFS", Volume 20, 2014, Number 4]], pages 53–58
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/20/4|"Notes on Intuitionistic Fuzzy Sets", Volume 20, 2014, Number 4]], pages 53–58
  | file            = NIFS-20-4-53-58.pdf
  | file            = NIFS-20-4-53-58.pdf
  | format          = PDF
  | format          = PDF

Latest revision as of 18:00, 28 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/20/4/53-58
Title of paper: Intuitionistic fuzzy logic control of metaheuristic algorithms' parameters via a generalized net
Author(s):
Olympia Roeva
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
olympia@biomed.bas.bg
Alžbeta Michalíková
Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica
alzbeta.michalikova@umb.sk
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 20, 2014, Number 4, pages 53–58
Download:  PDF (132  Kb, File info)
Abstract: In this paper a Generalized Net (GN) model of Intuitionistic fuzzy logic (IFL) control of metaheuristic algorithms’ parameters, is proposed. IFL controller is used to tune dynamically algorithm parameters. The GN-model describes the process of parameters control, trying to improve the algorithm performance.
Keywords: Generalized Net, Intuitionistic fuzzy logic, Parameters control, Metaheuristics.
AMS Classification: 03E72, 65Q85, 68T20.
References:
  1. Akram, M., S. Shahzad, A. Butt, A. Khaliq. Intuitionistic Fuzzy Logic Control for Heater Fans, Mathematics in Computer Science, Vol. 7, 2013, No. 3, 367–378.
  2. Aladjov, H., K. Atanassov. A Generalized Net for Genetic Algorithms Learning, Proc. of the XXX Spring Conference of the Union of Bulgarian Mathematicians, Borovets, 2001, 242–249.
  3. Atanassov, K. Generalized Nets, World Scientific, Singapore, 1991.
  4. Atanassov, K. Intuitionistic Fuzzy Sets, Fuzzy Set and Systems, Vol. 20, 1986, No. 1, 87–96.
  5. Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg, 1999.
  6. Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer Physica-Verlag, Berlin, 2012.
  7. Atanassov, K., H. Aladjov. Generalized Nets in Artificial Intelligence. Volume 2: Generalized nets and Machine Learning, Prof. M. Drinov Academic Publishing House, Sofia, 2000.
  8. Cicirello, V. A., S. F. Smith. Modeling GA Performance for Control Parameter Optimization, Proc. of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, Las Vegas, 2000, 235–242.
  9. Eiben, A. E., R. Hinterding, Z. Michalewicz. Parameter Control in Evolutionary algorithms, IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, No. 2, 124–141.
  10. Glover, F. Tabu Search – Wellsprings and Challenges, Eur. J. Oper. Res., 106, 1998, 221–225.
  11. Herrera, F., M. Lozano. Fuzzy Adaptive Genetic Algorithms: Design, Taxonomy, and Future Directions, Soft Computing, Vol. 7, 2003, 545–562.
  12. Pencheva, T., O. Roeva, A. Shannon, Generalized Net Models of Crossover Operators in Genetic Algorithms, Proc. of the 9th International Workshop on Generalized Nets, Sofia, Vol. 2, 2008, 64–70.
  13. Prieto, J. A. F., J. R. V. Pérez. Adaptive Genetic Algorithm Control Parameter Optimization to Verify the Network Protocol Performance, Proc. of IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, Eds.), June 22–27, 2008, 785–791.
  14. Roeva, O. Bat Algorithm in Terms of Generalized Net, Proc. of 15th International Workshop on Generalized Nets, Burgas, 2014, (in press).
  15. Roeva, O., A. Michalíková. Generalized Net Model of Intuitionistic Fuzzy Logic Control of Genetic Algorithm Parameters, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No.2, 71–76.
  16. Roeva, O., A. Shannon. A Generalized Net Model of Mutation Operator of the Breeder Genetic Algorithm, Proc. of the 9th International Workshop on Generalized Nets, Sofia, Vol. 2, 2008, 59–63.
  17. Roeva, O., P. Melo-Pinto. Generalized Net Model of Firefly Algorithm, Proc. of 14th International Workshop on Generalized Nets, Burgas, 2013, 22–27.
  18. Roeva, O., S. Fidanova. Chapter 13. Application of Genetic Algorithms and Ant Colony Optimization for Modeling of E. coli Cultivation Process, In: Real-World Application of Genetic Algorithms, In Tech, 2012, 261–282.
  19. Roeva, O., T. Pencheva. Generalized Net Model of a Multi-population Genetic Algorithm, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 8, 2010, 91–101.
  20. Subbu, R., P. Bonissone. A Retrospective View of Fuzzy Control of Evolutionary Algorithm Resources, Proc. of the 12th IEEE International Conference on Fuzzy Systems, May 25–28, St. Louis, USA, Vol. 1, 2003, 143-148.
  21. Voβ, S. Meta-heuristics: The State of the Art, Lecture Notes in Artificial Intelligence, Vol. 2148, 2001, 1–23.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.